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Based on equations of the elasticity, this paper proposes a unified higher-order shear deformation theory for
stochastic vibration and buckling analysis of the functionally graded (FG) microplates. The governing equations
of motions are derived from Hamilton’s principle. The solutions are approximated by bi-directional series in
which hybrid shape functions are proposed, then the stiffness and mass matrix are explicitly derived. In order
to investigate the stochastic responses of the FG microplates, the polynomial chaos expansion (PCE) is used.
The multiple uncertain material properties are randomly changed via the lognormal distributions. Numerical
results are presented for different configurations of the FG microplates such as the power-law index, material
length scale parameter, length-to-thickness ratio and boundary conditions on their critical buckling loads and
natural frequencies. The results from PCE are evaluated by comparing with those from Monte Carlo simulation
to show the efficiency and accuracy of the present approach. Some new results for stochastic analysis of the

FG microplates are presented and can be used for future references.

1. Introduction

Functionally graded (FG) microplates with continuous variations
of materials properties can be used for potential application in engi-
neering fields such as atomic force microscopes (AFMs) [1], micro-
electromechanical systems (MEMs) ([2,3]) and nano-electromechanical
systems (NEMS) ([4,5]). It is known that classical elasticity theory
could not accurately predict responses of these small scale structures;
thus, different approaches have been developed. A number of stud-
ies have been performed to predict accurately static, buckling and
vibration behaviours of the FG microplates ([6-16]) in which the
modified coupled stress theory (MCT) and modified strain gradient
theory (MST) are mostly used for various theories (classical plate
theory (CPT), first-order shear deformation plate theory (FSDT), higher-
order shear deformation plate theories (HSDTs), three dimensional
elasticity theory). The MCT initiated by Yang et al. [17] was known
as the simplest one to include the size effects with only one material
length scale parameter (MLSP) associated with rotation gradient in
the constitutive equations. The MST proposed by Lam et al. [18]
modified the classical strain gradient theory of Mindlin [19], Mindlin
and Eshel [20] to establish a new set of high-order metrics, where
the total number of MLSP was reduced from five to three. The MST
can be reduced to MCT if two MLSPs related to dilatation gradient
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and deviatoric stretch gradient were set to be zero. It should be men-
tioned that although the MST predicts more accurate than the MCT,
it appears to be complicated to implement. Moreover, another way to
capture size effects of nanostructures is to use the nonlocal elasticity
theory (NET) known as Eringen’s one ([21]). By involving the nonlocal
parameter in constitutive equations, the NET has been employed for
analysis of the FG nanoplates ([22-24]) and nanobeams ([25-27]).
However, it is complicated to implement different boundary conditions
for nanostructures.

Due to manufacturing process or other unexpected factors, the
materials properties of the FG plates can be uncertain ([28-32]), which
leads to the change on their static and dynamic behaviours. Literature
review [33] shows that majority studies of the FG microplates focused
on deterministic analysis, which provides only mean responses and
neglects the deviation caused by their random material properties.
Monte Carlo Simulation (MCS) method ([34]) is the simplest and most
popular approach to solve this complicated problem. It was used for
analysis of the FG and laminated composite plates ([35-38]). Nonethe-
less, this approach is infeasible in different cases due to its expensive
computational cost, especially when a complicated physical model is
considered. In order to overcome this adverse, Kumar et al. [39] pro-
posed an artificial neural network-based-MCS approach for stochastic
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buckling analysis of laminated composite sandwich plates. Another
approach is to use polynomial chaos expansion (PCE) which speeds
up the computing process while still maintains the accuracy. The
key idea of this approach is to approximate the stochastic outputs
as a series in an orthogonal space including the basis functions and
their appropriate coefficients. This approach has been employed for
static and dynamic analysis of laminated composite and FG plates
with uncertainty of materials properties. Peng et al. [40] studied a
uncertainty analysis of composite laminated plate with data-driven PCE
method under insufficient input data of uncertain parameters based
on finite element model (FEM) to solve the natural frequency. Umesh
and Ganguli [41] presented the material uncertainty effect on vibration
control of smart composite plate using PCE and FEM. Chakraborty
et al. [42] analysed the stochastic free vibration analysis of lami-
nated composite plates using polynomial correlated function expansion.
Sasikumar et al. [43] proposed a data-driven PCE method for stochastic
analysis of laminated composite plates. Shaker et al. [44] studied the
stochastic FEM to perform reliability analysis of the free vibration of
composite plates with material and fabrication uncertainties using the
first-order and second-order reliability method based on the third-order
shear deformation theory (TSDT). Li et al. [45] investigated stochastic
thermal buckling characteristics of laminated composite plates with the
random system properties using the first-order perturbation technique.
For FG plates, Li et al. [46] investigated stochastic static responses
of FG plates with uncertainty of material properties using the PCE,
FSDT and isogeometric approach. Garcia-Macias et al. [47] illustrated
the meta model-based approach for stochastic free vibration analysis
of FG carbon nanotube reinforced plates using the FEM. A literature
review shows that although many studies on the stochastic analysis
of composite/FG plates have been performed, as far as the authors
are aware the similar research on the FG microplates is still very
limited. Besides, it is well-known that the HSDT generally predicts more
accurate than the FSDT, however, its accuracy depends on a choice of
the shear functions ([48-55]). Thus, it is important to propose unified
HSDT for various shear deformation plate theories and then apply for
stochastic analysis of the FG microplates. These are the main novelty
and contributions of this paper.

The main objective of this paper is to develop a stochastic model
for free vibration and buckling analysis of the FG microplates using a
combination of unified HSDT, which is derived from the fundamental
of elasticity theory and PCE and MCT. The governing equations of
motions are derived from Hamilton’s principle and then bi-directional
series-type solutions with hybrid shape functions are proposed. Nu-
merical results are presented for different configurations of material
distributions, multiple uncertain material properties, boundary condi-
tions on the critical buckling loads and natural frequencies of the FG
microplates. The MCS with 10,000 samples is also considered as the
exact solutions and used to investigate the performance of the proposed
PCE model. New results presented in this study can be of interests to
the scientific and engineering community in the future.

2. Theoretical formulation

Consider a FG rectangle microplate in the coordinate system (x;, x,.
x3) with sides a x b and thickness h as shown in Fig. 1. It is composed
of a mixture of ceramic and metal materials whose material properties
vary continuously in the thickness direction. The material properties
such as Young’s modulus E, mass density p, Poisson’s ratio v can be
approximated by the following expressions ([52,56]):

P() = (r- ) (2520

where P, and P,, are the material properties of ceramic and metal; p is
the power-law index which is positive and x; € [-h/2,h/2].

+ P, (€D)]
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Fig. 1. Geometry of a FG microplate.
Table 1
Approximation functions of series solutions with different boundary conditions.
Boundary conditions (BCs) Approximation functions
R, (x)) P (x,)
SFSF x,e’% xze’%
SSSS X (a—xl)e’”TI X, (b—xz)e’%
CFCF xte” o xe” b
CSCS x2 (a—xl)ae’% x2 (b—xz)e’JTj
ccce x2(a—x) e« x2 (b—x2)2 e
Table 2

Convergence study of the series solution of the FG microplates (MAT 1) with different
BCs (a/h =10, p=1, h/l = 1).

Number of series N =N, =N,
2 4 6 8 10 12

Solution

Non-dimensional fundamental frequency

SSSS 11.1861 11.0496 11.0085 11.0105 11.0100 11.0104
CSsCs 17.3575 16.8286 16.8204 16.8195 16.8199 16.8196
Ccce 24.1572 24.0579 24.0530 24.0526 24.0524 24.0527
Non-dimensional critical buckling load with biaxial compression
SSSS 29.8053 29.1773 28.9979 28.9879 28.9873 28.9878
CsCs 62.4027 57.1124 57.0130 57.0126 57.0129 57.0127
Cccce 109.5176  108.3697  108.1556  108.1545  108.1547  108.1544

2.1. Modified couple stress theory (MCT)

The total potential energy of the FG microplates is obtained by:
=1y + 1T, — Iy @

where I, I1,,ITx are the strain energy, work done by membrane
forces and kinetic energy of systems. Based on the MCT, the strain
energy of the system I7;; is given by:

y =/ (o +my) dV (3
14

where ¢, y are strains and symmetric rotation gradients, respectively;
o is Cauchy stress; m is the high-order stress corresponding with strain
gradients y, respectively. The components of strain ¢; and strain
gradients y; ; are defined as follows:

1

g = 3 (u,-,j + uj’lv) (4a)
1

Xij= g (un,mjeimn + un,miejmn) (4b)

where §;;,e;,, are Kronecker delta and permutation symbol, respec-
tively; the comma in subscript is used to indicate the derivative of
variable that follows. The stress components are calculated from con-
stitutive equations as follows:

0ij = Aey b + 2pe;; (5a)
m;; = 2.1412}(1'/ (5b)
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Table 3
Non-dimensional natural frequency of the FG square microplates (MAT 1).
BCs a/h p Theory h/l
oo 5 2.5 1.25 1
SSSS 20 1 Present 4.5218 4.9612 6.0813 9.3027 11.1206
RPT [56] 4.5228 4.9568 6.0756 9.2887 11.1042
RPT [6] 4.5228 4.9568 6.0756 9.2887 11.1042
RPT [9] 4.5228 4.9556 6.0714 9.2768 11.0882
2 Present 4.1098 4.4980 5.5114 8.4121 10.0595
RPT [56] 4.1100 4.5006 5.5082 8.4062 10.0450
5 Present 3.8921 4.2000 5.0188 7.4385 8.8270
RPT [56] 3.8884 4.2005 5.0199 7.4397 8.8286
10 Present 3.7631 4.0302 4.7433 6.9005 8.1468
RPT [56] 3.7622 4.0323 4.7488 6.9013 8.1494
RPT [9] 3.7623 4.0299 4.7428 6.8914 8.1384
10 1 Present 4.4209 4.8572 5.9865 9.1997 11.0105
RPT [56] 4.4192 4.8526 5.9664 9.1537 10.9511
2 Present 4.0104 4.4022 5.4165 8.3166 9.9495
RPT [56] 4.0090 4.4006 5.4071 8.2863 9.9101
5 Present 3.7681 4.0828 4.9083 7.3331 8.7203
RPT [56] 3.7682 4.0876 4.9169 7.3338 8.7135
10 Present 3.6387 3.9112 4.6331 6.7911 8.0442
RPT [56] 3.6368 3.9162 4.6464 6.8030 8.0448
Ccce 5 1 Present 6.4417 7.9096 11.0832 19.0090 23.2057
IGA [13] 6.3868 - - - -
2 Present 5.7789 7.1127 9.9861 17.1343 20.8920
IGA [13] 5.7292 - - - -
5 Present 5.1524 6.2984 8.7539 14.9050 18.1416
IGA [13] 5.1082 - - - -
10 Present 4.8661 5.8924 8.1005 13.6879 16.6596
IGA [13] 4.8214 - - - -
10 1 Present 7.6557 8.9348 11.9381 19.7962 24.0526
IGA [13] 7.6251 - - - -
2 Present 6.9136 8.0861 10.7890 17.8776 21.7236
IGA [13] 6.8944 - - - -
5 Present 6.3989 7.3509 9.6103 15.6233 18.9125
IGA [13] 6.3722 - - - -
10 Present 6.1521 6.9730 8.9756 14.3803 17.3596
IGA [13] 6.1039 - - - -

where A, u are Lamé constants; Latin indices in Egs. (4) and (5) take
values 1, 2 and 3; / is material length scale parameter (MLSP) which is
used to measure the effect of couple stress ([58]). This parameter can
be determined by experimental works ([18]).

The work done by membrane compressive loads (N?, N;’, N ?2) of
the FG microplates is given by:

2 2
m=-/ [N? (0, ) + 2N 1, + N9 (a2, ]dA ©
. ) 173, :
The kinetic energy of the FG microplates ITy is expressed by:
1 . ) .
szz/p(x3)(uf+u§+u§)dV 7
v

where p (x3) is mass density; i, = u,,, i, = uy,, i3 = uy, are velocities
in x;—, x,— and x;— directions, respectively.

2.2. Unified higher-order shear deformation theory (HSDT) of the FG
microplates

For simplicity purpose, the effects of transverse normal strain are
; 0 0 .
nfeglected, i.e. uy (xl,x?,x3) =u) (x1,%) whe.re u (x1,x,) is transverse
displacement at the mid-surface of the FG microplates. Moreover, it is
supposed that the transverse shear stresses are expressed in terms of
the transverse shear forces as follows:

o13=f3(x3) 0y (x1,%)
03=1/3 (x3) 0, (xl’x2)

where f (x;) is a higher-order term whose first derivative satisfies the
free-stress boundary condition at the top and bottom surfaces of the mi-
croplates, i.e. f;(x; = ig =0; Q) (x1,x),0; (x1,x,) are the trans-
verse shear forces. Additionally, transverse shear strains are linearly re-
lated to the membrane displacements u; (x|, Xy, x3),u; (x,x;,x3) and

(8a)
(8b)

0 .
transverse one u (x;,x,) by:

c f304
Y13 =13 +u21=£=— (%9a)
L u
093 f30,
Y3 =Up3 + uSZ =2= (9b)
2 u u
_ E(x3)

where 4 (x3) = X5 is the shear modulus. Furthermore, integrating
Eq. (9) in x3— direction leads to a general displacement field of the FG
microplates as follows:

up (x,%p,%3) = u(l) (x1,%7) = x3ug‘1 + ¥ (x3) 0 (x1,x3) (10a)
uy (x1,Xp,x3) = ug (x1.x7) = x3u2’2 + ¥ (x3) Q) (x1.%7) (10b)
uy (x1,%p,%3) = ug (x1,%7) (10c)
where ¥ (x;) = 0x3 ”(53)dx3. It is observed that Eq. (10) can be

considered as a general zeroth-order shear deformation theory in which
displacement field of Shimpi ([59]) can be obtained by the assumption

. 3 . .
of homogeneous materials and f (x;) = % z— ;%) Moreover, it is

known that the transverse shear forces can be expressed in terms of
the rotation (¢, ¢,) and gradients of the transverse displacement as

follows:
0 (x1.x,) = H* ((Pl +u§’,1) (11a)
0, (x1,x) = H® ((ﬂz +u8,2) (11b)

where H® = k* f_hh//zz 4 (x3) dx; is the transverse shear stiffness of the FG

microplates; k* = 5/6 is shear coefficient factor. Substituting Eq. (11)
into Eq. (10) leads to a general HSDT as follows:

up (x1,%5,%3) = ”(1) (x1, %) + @y (x3) ug%l + @, (x3) @ (x1,%3) (12a)
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Table 4

Comparison study between MCS (10.000 samples) and PCE (256 samples) for the mean, standard deviation (SD), Kurtosis and Skewness for

the fundamental frequency of the FG plates (a/h =5, MAT 1).

Thin-Walled Structures 177 (2022) 109473

BCs P Theory mean SD Kurtosis Skewness COV(%) Time(s) Present
SFSF 1 PCE 3.5550 0.1877 2.5016 0.0227 5.3 11.49 3.5559
MCS 3.5551 0.1879 2.5914 0.0228 5.3 590.79
2 PCE 3.2106 0.2540 2.6438 0.1338 7.9 12.67 3.2076
MCS 3.2121 0.2538 2.6439 0.1336 7.9 575.61
5 PCE 2.9792 0.3120 2.6835 0.1960 10.5 14.06 2.9722
MCS 2.9819 0.3121 2.6835 0.1959 10.5 538.25
10 PCE 2.8668 0.3278 2.6921 0.2468 11.4 14.25 2.8571
MCS 2.8689 0.3280 2.6922 0.2465 11.4 541.54
SSSS 1 PCE 4.0790 0.2114 2.5845 0.0262 5.2 14.06 4.0782
MCS 4.0787 0.2114 2.5844 0.0264 5.2 536.56
2 PCE 3.6839 0.2875 2.6374 0.1295 7.8 12.32 3.6811
MCS 3.6849 0.2870 2.6377 0.1299 7.8 568.27
5 PCE 3.3997 0.3535 2.6737 0.2114 10.4 13.14 3.3950
MCS 3.3988 0.3537 2.6734 0.2117 10.4 526.38
10 PCE 3.2601 0.3738 2.6984 0.2509 115 13.65 3.2511
MCS 3.2577 0.3734 2.6983 0.2512 11.5 525.58
CFCF 1 PCE 4.5089 0.2390 2.5653 0.0129 5.3 11.59 4.5082
MCS 4.5100 0.2387 2.5657 0.0128 5.3 511.87
2 PCE 4.0469 0.3214 2.6253 0.1254 7.9 11.29 4.0431
MCS 4.0473 0.3214 2.6255 0.1253 7.9 527.74
5 PCE 3.6776 0.3921 2.6732 0.2142 10.7 12 3.6696
MCS 3.6803 0.3928 2.6734 0.2143 10.7 522.61
10 PCE 3.5154 0.4146 2.7044 0.2565 11.8 12 3.5051
MCS 3.5148 0.4145 2.7049 0.2565 11.8 545.85
cscs 1 PCE 5.2247 0.2664 2.5709 0.0156 5.1 15 5.2238
MCS 5.2272 0.2664 2.5707 0.0151 5.1 523.46
2 PCE 4.7038 0.3599 2.6277 0.1248 7.7 25 4.6999
MCS 4.7045 0.3596 2.6278 0.1249 7.7 549.55
5 PCE 4.2712 0.4427 2.6774 0.2147 10.4 16 4.2627
MCS 4.2687 0.4429 2.6775 0.2146 10.4 580.37
10 PCE 4.0666 0.4718 2.7066 0.2578 11.6 31 4.0550
MCS 4.0656 0.4720 2.7064 0.2577 11.6 592.43
CCCC 1 PCE 6.4425 0.3222 2.5557 0.0034 5.0 16.00 6.4417
MCS 6.4429 0.3218 2.5550 0.0039 5.0 533.16
2 PCE 5.7829 0.4327 2.6171 0.1170 7.5 14.87 5.7789
MCS 5.7815 0.4324 2.6179 0.1164 7.5 529.85
5 PCE 5.1638 0.5327 2.6805 0.2195 10.3 15.28 5.1524
MCS 5.1649 0.5332 2.6811 0.2189 10.3 574.46
10 PCE 4.8807 0.5726 2.7155 0.2652 11.7 15.57 4.8661
MCS 4.8811 0.5727 2.7150 0.2659 11.7 581.27
uy (x1, %0, X3) = 1) (x1, %) + @y (x3) U, + P, (x3) @3 (1, %) (12b) Moreover, the symmetric rotation gradients are given by:
uy (x1,%p,%3) = ug (x1,%7) (12¢) 1/~ =
2y =5 (0,+8,,) as)

where @, (x3) = H*¥ (x3) — x3,@, (x3)

HSY (x3). Similarly, it

is from Eq. (12) that the displacement field of Re}issner [48], Shi
et al. [55] can be derived with f (x3) = 3 (z - 4i), and Reddy’s

X 2 32
theory [49] with f (x3) = % (z - %)

Substituting Eq. (12) into Eq. (4), the in-plane and out-of-plane
strains €7 = [¢®) )] are obtained as follows:

D =0+ @) (x3) eV + D, (x3) @ (13a)
£ = @5 (x3) e® (13b)
here @, (x;) = H*W 5 with ¥ (x;) = 2282 and
where @; (x3) = 3 with W5 (x3) = o ands
) 0 (1) 0
511 ul,l 611 u3,1|
0 _J O _ 0 M) ML _ 0
EE\En (= U2 ETT=Ey Ty (o
0) 0 0 (1) 0
71 Uty 1o 2u3 1,
2)
€n P11
2 2
P =320 =1 9 (14a)
2)
b P12t P2
©) 0
b4 @ tu
V=01 = o (14b)
V23 (% Usn

where 6, is determined in terms of the displacements «; as follows:

0= (uzp —up3) = 3 (ug2 —@ 5, - ‘Dz,s‘ﬂz) (16a)
0, = 3 (u1,3 - u3,l) =3 (—ug’] +<D1,3u2,1 +<D2,3(p1> (16b)
b3=3 (2 —m2) = 2 [”241 — ), + D, (py - ‘ﬂl,z)] (16¢)

Substituting Eq. (16) into Eq. (15), the rotation gradients are expressed

as follows:

=20+ @37V + D3 7P + B 330 + @y 337D + 0y 4O a7
where T = [y, xn 2x2 3 213 2is) and,
0 0
.12 BLERE
—u° 0
U312 Us 1
0 0 0
U3y — U Uy, —u
20 = 1) =ty O L]0~ g
2 0 2 0
0
M1 T2 0
0 0
U120 " Ui 0
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Table 5
Comparison study between MCS (10.000 samples) and PCE (256 samples) for the mean, standard deviation (SD), Kurtosis and Skewness for
the fundamental frequency of the FG microplates (a/h = 10, MAT 1).

BCs p Theory Mean SD Kurtosis Skewness COV(%) Time(s) Present
njl =1
SSSS 1 PCE 11.0107 0.5087 2.4628 —-0.0532 4.6 17.02 11.0105
MCS 11.0100 0.5087 2.4633 —0.0531 4.6 814.11
5 PCE 8.7431 0.8313 2.6301 0.1966 9.5 18.12 8.7203
MCS 8.7456 0.8317 2.6308 0.1962 9.5 815.30
10 PCE 8.0719 0.8990 2.6953 0.2624 11.1 18.47 8.0442
MCS 8.0747 0.8986 2.6949 0.2629 11.1 817.04
CCCC 1 PCE 24.0519 1.1046 2.4451 —0.0594 4.6 17.68 24.0526
MCS 24.0482 1.1041 2.4547 —0.0596 4.6 818.84
5 PCE 18.9599 1.7906 2.6265 0.1961 9.4 17.82 18.9125
MCS 18.9631 1.7912 2.6260 0.1962 9.4 817.73
10 PCE 17.4222 1.9411 2.7025 0.2651 11.1 18.44 17.3596
MCS 17.4209 1.9406 2.7031 0.2645 11.1 818.42
njl=5
SSSS 1 PCE 4.8590 0.2458 2.5788 0.0199 5.1 17.65 4.8572
MCS 4.8565 0.2453 2.5779 0.0197 5.1 811.69
5 PCE 4.0912 0.4163 2.6649 0.2053 10.2 18.20 4.0828
MCS 4.0913 0.4164 2.6648 0.2049 10.2 815.24
10 PCE 3.9210 0.4402 2.6852 0.2476 11.2 17.95 3.9112
MCS 3.9213 0.4406 2.6855 0.2480 11.2 817.51
CCCC 1 PCE 8.9385 0.4421 2.5478 0.0197 4.9 17.10 8.9348
MCS 8.9356 0.4426 2.5481 0.0199 4.9 816.86
5 PCE 7.3712 0.7425 2.6682 0.2108 10.1 17.66 7.3509
MCS 7.3723 0.7429 2.6675 0.2106 10.1 820.08
10 PCE 6.9934 0.7913 2.6981 0.2564 11.3 17.90 6.9730
MCS 6.9955 0.7917 2.6987 0.2568 11.3 818.79
h/l =10
SSSS 1 PCE 4.5341 0.2337 2.5998 0.0357 5.2 17.82 4.5338
MCS 4.5330 0.2339 2.5995 0.0352 5.2 819.66
5 PCE 3.8564 0.3966 2.6671 0.2078 10.3 18.05 3.8502
MCS 3.8580 0.3970 2.6675 0.2877 10.3 817.34
10 PCE 3.7169 0.4179 2.6889 0.2474 11.2 18.25 3.7072
MCS 3.7199 0.4183 2.6891 0.2476 11.2 818.59
CCCC 1 PCE 8.0048 0.4076 2.5525 0.0165 5.1 17.30 8.0090
MCS 8.0032 0.4071 2.5520 0.0164 5.1 816.72
5 PCE 6.6760 0.6844 2.6616 0.2069 10.3 17.53 6.6562
MCS 6.6778 0.6849 2.6611 0.2071 10.3 819.33
10 PCE 6.3784 0.7261 2.6906 0.2524 11.4 17.87 6.3648
MCS 6.3783 0.7261 2.6905 0.2525 11.4 817.85
Table 6 Table 7
Non-dimensional critical buckling loads of the FG square plates (MAT 1). Non-dimensional critical buckling loads of SSSS FG square microplates (MAT 2) with
BCs a/h Theory » biaxial compression.
1 9 5 10 a/h p Theory h/l
Axial compression (N:‘, NJ,NY =1,0,0) o 5 2.5 1.25 1
SSSS 5 Present 8.2250 6.3433 5.0517 4.4807 10 0 Present 18.0854 20.9253 29.4718 63.6538 88.2866
IGA [13] 8.2245 6.3432 5.0531 4.4807 IGA [13] 18.0754 20.9026 29.3735 63.1958 88.5417
IGA-TSDT [57] 8.2245 6.3432 5.0531 4.4807 RPT [9] 18.0756 20.8497 29.1700 62.4358 87.3775
10 Present 9.3395 7.2635 6.0352 5.4537 1 Present 7.8281 9.3962 14.1003 32.9144 47.0226
IGA [13] 9.3391 7.9631 6.0353 5.4528 IGA- [13] 7.8276 9.3767 14.0232 32.6037 46.5372
IGA-TSDT [57] 9.3391 7.2631 6.0353 5.4529 RPT [9] 7.8277 9.3581 13.9459 32.2693 45.9981
ceee 10 Present 21.0950 16.2860 13.0276 11.5736 10 Present 3.4988 4.0175 5.5737 11.7984 16.4669
IGA [13] 20.9471 16.1682 12.9218 11.4711 IGA- [13]  3.4969 4.0513 5.6631 11.9349 16.6033
RPT [9] 3.4982 4.0246 5.5925 11.8036 16.4431
Biaxial compression (N7, Ny, Ny, = 1,1,0) 20 0 Present 189254 21,7833 303569 64.6505 90.3698
SSSS 5 Present 4.1125 3.1717 2.5259 2.2404 IGA [13] 18.9243 21.7771 30.3324 64.5348 90.1804
IGA [13] 4.1122 3.1716 2.5265 2.2403 RPT [9] 18.9244 21.7628 30.2773 64.3321 89.8715
IGA-TSDT [57] 4.1123 3.1716 2.5265 2.2403 1 Present 8.1147 9.6868 14.4033 33.2685 47.4168
10 Present 4.6697 3.6317 3.0176 2.7268 IGA [13] 8.1142 9.6815 14.3832 33.1882 47.2914
IGA [13] 4.6696 3.6315 3.0177 2.7264 RPT [9] 8.1143 9.6766 14.3626 33.0999 47.1494
IGA-TSDT [57] 4.6696 3.6315 3.0177 2.7264 10 Present 3.7475 4.2674 5.8270 12.0655 16.7444
CCcCC 10 Present 11.4214 8.8376 7.1420 6.3759 IGA [13] 3.7450 4.2752 5.8505 12.1011 16.7793
IGA [13] 11.3805 8.8028 7.1165 6.3518 RPT [9] 3.7454 4.2677 5.8312 12.0666 16.7376
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Comparison study between MCS (10.000 samples) and PCE (16 samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the
critical buckling loads of the FG plates with axial compression (MAT 1).

BCs alh p Theory Mean SD Kurtosis Skewness COV (%) Time (s) Present
SFSF 5 1 PCE 0.8844 0.1295 2.3679 0.3494 14.6 8.84 0.8814
MCS 0.8848 0.1296 2.3675 0.3493 14.6 243.18
2 PCE 0.6872 0.0711 2.3260 0.2701 10.3 8.07 0.6846
MCS 0.6868 0.0708 2.3264 0.2702 10.3 252.32
5 PCE 0.5666 0.0404 2.2600 0.1152 7.1 8.92 0.5660
MCS 0.5659 0.0409 2.2605 0.1149 7.1 234.28
10 PCE 0.5112 0.0337 2.2556 0.1294 6.6 9.10 0.5106
MCS 0.5112 0.0337 2.2555 0.1294 6.6 262.81
SSSS 1 PCE 8.2320 1.2316 2.3684 0.3505 15.0 8.72 8.2250
MCS 8.2314 1.2310 2.3688 0.3506 15.0 277.28
2 PCE 6.3687 0.6878 2.3295 0.2803 10.8 8.49 6.3433
MCS 6.3664 0.6879 2.3291 0.2807 10.8 258.34
5 PCE 5.0478 0.3701 2.2547 0.1234 7.3 9.15 5.0517
MCS 5.0531 0.3708 2.2543 0.1239 7.3 283.27
10 PCE 4.4855 0.2691 2.2591 0.1307 6.0 9.71 4.4807
MCS 4.4853 0.2691 2.2593 0.1308 6.0 271.20
CFCF 1 PCE 2.0177 0.2996 2.3536 0.3493 14.8 7.89 2.0053
MCS 2.0115 0.2991 2.3534 0.3495 14.8 217.96
2 PCE 1.5574 0.1661 2.3261 0.2761 10.7 7.78 1.5511
MCS 1.5543 0.1659 2.3264 0.2762 10.7 211.56
5 PCE 1.2547 0.0904 2.2668 0.1451 7.2 8.34 1.2535
MCS 1.2509 0.0907 2.2663 0.1456 7.2 241.76
10 PCE 1.1203 0.0705 2.2563 0.1342 6.3 8.93 1.1188
MCS 1.1183 0.0706 2.2565 0.1339 6.3 285.11
SSSS 10 1 PCE 9.3424 1.3669 2.3676 0.3486 14.6 9.11 9.3395
MCS 9.3427 1.3664 2.3679 0.3487 14.6 252.11
2 PCE 7.2897 0.7483 2.3244 0.2670 10.3 8.98 7.2635
MCS 7.2763 0.7487 2.3245 0.2676 10.3 237.98
5 PCE 6.0415 0.4294 2.2585 0.1103 7.1 10.30 6.0352
MCS 6.0410 0.4297 2.2586 0.1101 7.1 237.56
10 PCE 5.4599 0.3624 2.2551 0.1270 6.6 10.21 5.4537
MCS 5.4544 0.3622 2.2553 0.1272 6.6 210.68
CFCF 1 PCE 1.3561 0.1971 2.3655 0.3472 14.5 8.00 1.3470
MCS 1.3462 0.1972 2.3655 0.3476 14.5 212.32
2 PCE 1.0518 0.1079 2.3223 0.2675 10.3 7.86 1.0480
MCS 1.0431 0.1074 2.3227 0.2670 10.3 177.33
5 PCE 0.8734 0.0617 2.1885 0.0702 7.1 8.36 0.8729
MCS 0.8778 0.0619 2.188 0.0708 7.1 243.65
10 PCE 0.7909 0.0531 2.2618 0.1271 6.7 8.69 0.7899
MCS 0.7844 0.0533 2.2617 0.1274 6.7 255.65
2R Furthermore, the stresses and strains of the FG microplates are related
?12 by constitutive equations as follows:
1= (18a) ) o1 O, QOp O €11 o
®21 = P12 oV =16,t={0 0n 0 [qexne=QVe? (192)
0 o1 0 0 Q6| |12
0 5O = {"13} - [st 0 ] {“3} = Qe (19b)
0 0 023 0 Ousl 723 )
0 0 my, 1 0 0 0 0 0][x
| ] AR
W == , _Jmol _, 2 Y| _
0 X 21 o m= i 2ul 000 1 0 0)zm(” a, I X (19¢)
R
m
“3,1 ? 13 X13
0 where a, = 2ul?, Q); = El(jz), 0y = @, 0, = Vi(f;), Quy = 055 =
0 Qo6 = 1 = f(g)fv))
0 In order to derive the equation of motion, Hamilton’s principle is
(18b) used:
0
5]
@211 — P12 / (6Iy + 81Ty — M) dt =0 (20)
t
P2,12 = P12 :

where 611,611,811 are the variations of strain energy, work done
by membrane compressive forces and kinetic energy, respectively. The
variation of the strain energy of FG microplates derived from Eq. (3)
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Table 9

Comparison study between MCS (10.000 samples) and PCE (16 samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the
critical buckling loads of CCCC FG plates (MAT 1).
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a/h p Theory Mean SD Kurtosis Skewness COV (%) Time (s) Present
Axial compression (N?,N;’,N?Z =1,0,0)
10 1 PCE 21.2503 3.1515 2.3684 0.3503 14.8 8.23 21.0950
MCS 21.2089 3.1521 2.3678 0.3509 14.8 223.41
2 PCE 16.3498 1.7563 2.3279 0.2780 10.7 9.35 16.2860
MCS 16.3320 1.7561 2.3282 0.2787 10.7 219.87
5 PCE 13.0542 0.9369 2.2711 0.1512 7.2 8.66 13.0276
MCS 13.0527 0.9368 2.2715 0.1507 7.2 238.56
10 PCE 11.5863 0.7017 2.2578 0.1273 6.1 10.40 11.5736
MCS 11.5920 0.7014 2.2581 0.1270 6.1 224.98
20 1 PCE 23.8157 3.4591 2.3675 0.3488 14.5 12.09 23.6531
MCS 23.7814 3.4585 2.3681 0.3494 14.5 236.52
2 PCE 18.4718 1.8916 2.3248 0.2670 10.2 9.27 18.4016
MCS 18.4805 1.8912 2.3250 0.2671 10.2 231.35
5 PCE 15.3385 1.0897 2.2580 0.1081 7.1 10.10 15.3190
MCS 15.2997 1.0895 2.2576 0.1088 7.1 227.63
10 PCE 13.8711 0.8991 2.1631 0.0328 6.5 9.98 13.8550
MCS 13.7917 0.8998 2.1627 0.0331 6.5 240.74
Biaxial compression (N?, Ng, N;’z =1,1,0)
10 1 PCE 11.5002 1.6963 2.3681 0.3498 14.8 8.16 11.4214
MCS 11.5036 1.6961 2.3683 0.3494 14.8 235.53
2 PCE 8.8696 0.9406 2.3275 0.2755 10.6 8.04 8.8376
MCS 8.8668 0.9400 2.3277 0.2760 10.6 242.14
5 PCE 7.1544 0.5119 2.2670 0.1393 7.2 8.69 7.1420
MCS 7.1579 0.5115 2.2676 0.1389 7.2 237.69
10 PCE 6.3870 0.3978 2.2578 0.1288 6.2 9.24 6.3759
MCS 6.3884 0.3977 2.2580 0.1285 6.2 239.56
20 1 PCE 12.6256 1.8307 2.3672 0.3481 14.5 7.98 12.5432
MCS 12.6415 1.8311 2.3678 0.3489 14.5 243.86
2 PCE 9.7974 1.0001 2.3238 0.2659 10.2 8.21 9.7575
MCS 9.7972 1.0002 2.3239 0.2657 10.2 241.38
5 PCE 8.1581 0.5792 2.2575 0.1051 7.1 8.84 8.1483
MCS 8.1207 0.5798 2.2571 0.1057 7.1 246.90
10 PCE 7.3892 0.4961 2.2540 0.1267 6.7 8.94 7.3794
MCS 7.3887 0.4959 2.2542 0.1270 6.7 244.81
[ _ _ - =z
as follows: MO A7 B B B B B ©
X N N s X
=X =X =r =X =i =X
M B D D E E F |[,®
51;[ = /,4(658 +méy)dA Mf) ﬁ): ﬁi{ ﬁ): Ei( il jl }((2)
05,0 s (1 2) ¢, (2 OFIE W l~3 = = = = — (6)) (23b)
= [Mg 056 + MWse) + MP5e® + MO 5¢) 1) M7 B E G D D, K ||¥
" :
“4) =X = =x ®
0) 5,,0) D 5,1 2)5,,(2) (3)5,,03) M M Y T X
+MO5x0 +MPsx D+ MP5x> + MP sy Mé> B EE I' D H L .
+MPsy® L+ MOs ;((5>] dA 2 P F OB L w
X X L s s s s |
where the stress resultants are given by: where the stiffness components of the FG microplates are defined as
follows:
0 1 2 "2 i
(MO, MO, M?) = /h (1.91.0,) 00, (222) W o |
" / (A%, B°, D", H,B,DS) = /m (L@, 7. @], @), @, ®,) QVdx; (24a)
M® = / @06 dx; (22b) h/2
—h2 AC / ®2QVdx, (24b)
(M(O) MDD MO M® M@ M(5))
VA Sy S S i G 4 =y =X =X
h2 < B".B! 3 B, BX) = (A%,B .B!.B ,BS,B{>16>(6
= /h/2 (193,95, P, 33, P, 33, D) mdx (220) (24¢)
/ (1,@ 5, @3, P 33, Py 33, ) @, Igypdx
These stress resultants can be expressed in terms of the strains and its —t —y —y —y —z
gradients as follows: (D D E E F ) = (D D ENLE L F >16X6
(24d)
‘D s D)3, D 33, D) 33, Dy ) @, Lgyedx
MO A° B B 0 L0 / D5 (D@3, Dy 3, P 33, Py 33, D) @, Ly dxs
(3 N
MO B Dt DE 0 [ . (Hf G'.T. J*) - (Ef,ﬁf,?{,?”)lﬁxs
= a 2 2
M?® B D H 0 ||e® h/z
(3 N s s
MO 0 o0 o0 Alle® = /h/2 D5 (D3, D) 33, Do 33, P2) @, Jgedxs (24e)
(3 s —
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Table 10
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Comparison study between MCS (10.000 samples) and PCE (16 samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the
critical buckling loads of the FG microplates with axial compression (a/h = 10, MAT 1).

BCs p Theory Mean SD Kurtosis Skewness COV (%) Time (s) Present
hJl=1
SSSS 1 PCE 58.4624 9.8782 2.3812 0.3725 16.9 12.50 57.9757
MCS 58.4657 9.8788 2.3809 0.3721 16.9 322.38
5 PCE 32.4824 3.2687 2.3614 0.3419 10.1 11.91 32.3346
MCS 32.4856 3.2688 2.3615 0.3420 10.1 342.57
10 PCE 26.7580 1.9125 2.3526 0.3299 7.1 12.10 26.6745
MCS 26.7544 1.9128 2.3529 0.3295 7.1 333.43
Ccce 1 PCE 207.7745 35.5152 2.3821 0.3741 17.1 11.25 206.0174
MCS 207.7809 35.5145 2.3815 0.3737 17.1 329.37
5 PCE 113.6983 11.7596 2.3717 0.3584 10.3 12.48 113.1408
MCS 113.6748 11.7599 2.3722 0.3579 10.3 327.81
10 PCE 92.7044 6.6338 2.3664 0.3509 7.2 12.87 92.3964
MCS 92.7008 6.6344 2.3659 0.3502 7.2 340.11
h/l=5
SSSS 1 PCE 11.3652 1.7074 2.3706 0.3542 15.0 12.43 11.2853
MCS 11.3660 1.7079 2.3712 0.3544 15.0 326.25
5 PCE 7.0992 0.5427 2.2761 0.1661 7.6 12.16 7.0872
MCS 7.1011 0.5430 2.2766 0.1659 7.6 328.68
10 PCE 6.3119 0.4242 2.2682 0.1635 6.7 11.94 6.3026
MCS 6.3131 0.4245 2.2686 0.1631 6.7 324.37
CCccC 1 PCE 28.8815 4.4686 2.3726 0.3578 15.5 12.15 28.6604
MCS 28.8786 4.4688 2.3721 0.3581 15.5 328.97
5 PCE 17.2289 1.3323 2.2976 0.2205 7.7 12.67 17.1832
MCS 17.2301 1.3325 2.2977 0.2200 7.7 327.24
10 PCE 14.9834 0.9562 2.2820 0.1926 6.4 12.53 14.9497
MCS 14.9864 0.9565 2.2826 0.1924 6.4 330.12
h/l =10
SSSS 1 PCE 9.8931 1.4520 2.3685 0.3502 14.7 12.35 9.8259
MCS 9.8878 1.4525 2.3688 0.3507 14.7 329.26
5 PCE 6.3059 0.4577 2.2632 0.1269 7.3 12.11 6.2982
MCS 6.3113 0.4580 2.2628 0.1270 7.3 328.68
10 PCE 5.6729 0.3778 2.2586 0.1373 6.7 12.16 5.6659
MCS 5.6803 0.3781 2.2590 0.1374 6.7 331.58
CCcC 1 PCE 23.1786 3.4837 2.3697 0.3527 15.0 12.61 23.0067
MCS 23.1818 3.4832 2.3700 0.3531 15.0 330.83
5 PCE 14.1185 1.0505 2.2789 0.1739 7.4 12.89 14.0846
MCS 14.1109 1.0500 2.2783 0.1740 7.4 329.12
10 PCE 12.4604 0.8084 2.2651 0.1499 6.5 12.36 12.4363
MCS 12.4581 0.8079 2.2655 0.1501 6.5 333.84

=X =Xy =X —y ” = =Xy =X —y p
D .D, K'H, L' 0)=(D.D, K H, L H ) g
h/2 (241)
= /h/z (@%_w4’1,33‘1’2,33»‘151,33‘1’2,‘1’;33’41’2,33‘1’2@%) o, Igxedx;

The variation of work done by membrane compressive loads derived
from Eq. (6) is given by:

sI1, = - / NO (4603, + 1,502, ) d A (25)
A 10U+ i3 0

where it is supposed that N = NJ = N° N°, = 0. The variation of
kinetic energy 6 [[ derived from Eq. (9) is calculated by:

My = %/Vp (i, 801y + 1y 811y + 113603 ) AV

= % /A [IO (960 + iQ6ul + u)5ul)

+1, (u?&ug)’] +il | ou +isul , + ug,zéu‘;)

+J, (ug{laq;l + 800+, 500, + ¢25ug,2) + K (0160, + 0260,)

+J, (#5¢) + ¢, 600 + W5, + y5u3) + I (ugylaug,l + 12(3{25!'48’2)] dA
(26)

where I, I,,1,,J,,J,,K, are mass components of the FG microplates
which are defined as follows:

h/2

(Io, 11, I, J 1, 05, K;) =/ (1,0, %, ®,,&,®,,D3) pdx; 27)

—h/2

3. Series-type solutions of the FG microplates

Based on the Ritz method, the membrane and transverse displace-
ments, rotations (u‘l’,ug,ug,(pl,(pz) of the FG microplates can be ex-
pressed in terms of the series of approximation functions and associated
values of series as follows:
Ni Ny
(W) Cer 30,0, 01 (e x,0 ) = ) D {unyy (0.3 0} Ry (x1) Py (x2)
i=1 j=1
(28a)
Ny N,
{Cer, %2, @2(x 1 X0, 0} = D D {uayy (0,95 (O} Ry (x1) Py (x2)
i=1 j=1
(28b)
Ny N,

ug(xl,xz,t) = z Zu3ij (D R; (xl) Pj (x2>

i=1 j=1

(28¢)

where uy;;,uy;;.u3;,%;;,y; are variables to be determined; R; (x,),
P, (x;) are the shape functions in x,—, x,— direction, respectively.
As a result, five unknowns of the microplates only depend on two
shape functions. It should be noted that the accuracy, convergence rates
and numerical instabilities of the Ritz solution depends on the shape
functions, which were discussed details in previous studies [50,60-62].
The functions R; (x;) and P; (x,) are chosen to satisfy the boundary
conditions (BCs) in which the simply-supported and clamped ones are
followed:
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Comparison study between MCS (10.000 samples) and PCE (16 samples) for the mean, standard deviation (SD), Kurtosis and Skewness for the
critical buckling loads of the FG microplates with biaxial compression (a/h = 10, MAT 1).

BCs p Theory Mean SD Kurtosis Skewness COV (%) Time (s) Present
h/l=1
SSSS 1 PCE 29.2312 4.9391 2.3812 0.3725 16.9 11.14 28.9879
MCS 29.2307 4.9387 2.3813 0.3721 16.9 320.88
5 PCE 16.2412 1.6344 2.3614 0.3419 10.1 12.36 16.1673
MCS 16.2435 1.6343 2.3619 0.3418 10.1 326.53
10 PCE 13.3790 0.9562 2.3526 0.3299 7.1 12.68 13.3372
MCS 13.3822 0.9566 2.3527 0.3295 7.1 329.08
CCccC 1 PCE 109.0762 18.6345 2.3820 0.3740 171 11.27 108.1545
MCS 109.0770 18.6350 2.3826 0.3742 171 328.53
5 PCE 59.7307 6.1697 2.3713 0.3577 10.3 12.82 59.4389
MCS 59.7422 6.1695 2.3715 0.3578 10.3 330.13
10 PCE 48.7194 3.4811 2.3708 0.3522 7.1 13.06 48.5635
MCS 48.7209 3.4805 2.3711 03521 7.1 335.17
h/l=5
SSSS 1 PCE 5.6826 0.8537 2.3706 0.3542 15.0 12.56 5.6427
MCS 5.6897 0.8541 2.3711 0.3539 15.0 330.21
5 PCE 3.5496 0.2714 2.2761 0.1661 7.6 12.69 3.5436
MCS 3.5574 0.2719 2.7657 0.1663 7.6 325.86
10 PCE 3.1560 0.2121 2.2682 0.1635 6.7 12.84 3.1513
MCS 3.1495 0.2125 2.2675 0.1637 6.7 327.46
CCcCC 1 PCE 15.4284 2.3779 2.3724 0.3575 15.4 12.75 15.3135
MCS 15.4356 2.3775 2.3720 0.3578 15.4 327.88
5 PCE 9.2723 0.7193 2.2942 0.2125 7.8 12.10 9.2498
MCS 9.2688 0.7197 2.2948 0.2123 7.8 330.23
10 PCE 8.0932 0.5221 2.2796 0.1879 6.5 12.47 8.0786
MCS 8.0844 0.5226 2.2799 0.1876 6.5 328.87
h/l =10
SSSS 1 PCE 4.9466 0.7260 2.3685 0.3502 14.7 12.90 4.9130
MCS 4.9508 0.7266 2.3688 0.3508 14.7 327.33
5 PCE 3.1530 0.2289 2.2631 0.1268 7.2 12.78 3.1491
MCS 3.1603 0.2284 2.2637 0.1270 7.2 329.48
10 PCE 2.8364 0.1889 2.2586 0.1373 6.7 12.25 2.8330
MCS 2.8294 0.1894 2.2590 0.1375 6.7 330.76
CCcCC 1 PCE 12.4847 1.8671 2.3695 0.3522 15.0 12.77 12.3969
MCS 12.4846 1.8672 2.3694 0.3523 15.0 331.58
5 PCE 7.6855 0.5689 2.2750 0.1632 7.4 12.32 7.6723
MCS 7.6890 0.5685 2.2725 0.1634 7.4 333.05
10 PCE 6.8149 0.4410 2.2638 0.1469 6.5 12.66 6.8047
MCS 6.8201 0.4415 2.2634 0.1466 6.5 330.13
Sy sppored 5540 = 48 = g = 0.8 = O amd K= TESD 4 BTSSR TS
w=ul=¢p,=0atx, =0,
= =y =0tz =0 KE = A5, TS 4 a5 TS K
+ Clamped (C): U =y =uy =@ =@ = 0atx; =0,a and x, =0,b = BE TS0 4 g 70022 L o pe Tl gl
=Bl 9 2% ik 2ji 66" ik i
The combination of S, C and Free (F) on the edges of the FG KiEjzlj = B, 27‘(,%(03?12 + B T} Sjl]l, Kflzlj = szzﬂiosff + B Ty S/lll

microplates leads to the various BCs as follows: SSSS, CSCS, CCCC,
CFCF, SFSF which will be considered in the numerical examples. The
hybrid shape functions R; (x;) and P; (x,) for different BCs used in
this paper are listed in Table 1. Substituting Eq. (28) into Egs. (21),
(25) and (26) and then the subsequent results into Eq. (10) lead to the
characteristic equations of motion of the FG microplates as follows:

Kd+Md=0 (29)

whered=[u; uw, u; ¢ (pz]T is the displacement vector to be
determined; K = K¢ + K7 is the stiffness matrix which is composed of
that of the strains K¢, symmetric rotation gradients K#; M is the mass
matrix. These components are given more details as follows:

KM KS12 K13 KS4 K¢S
TKS12 K22 K2 KS24 KS2S

K¢ =|TKB  TK2 KB K K| with¢ ={e, y} (30)
TRE4  TReM  TRed  goad geds
TKES  TRE2 TRES TgEds  giss

where the components of stiffness matrix K¢ are defined as follows:

1 _ g6 722600 | g6 il oIl geel2 _ g2 02620 | e 1l gl
Kijer = AT Si + AgeTue Sji - Kijiy = ATy Si + Age T Sy

ijkl 117k = j gl ijkl
€13 _ pe 722 ¢00 e 02 ¢20 e 1l ¢ll
Kijkl - BllTik Sjl + B12Tik Sjl + 2'B66Tik Sjl

€33 _ e 722 00 & 02 ¢20 20 02 e 00 22 e 11 gll
KijkI_DllTik Sj[ +D12 (le Sj/ +Tik Sj/ )+D22Tik Sjl +4D66Tik Sjl

e 700 ¢ll e 1l ¢00 0 (711 00 00 11
+ AT Sjl + Asss T Sj[ -N (Tik Sjl + Ty Sjl)

4= D1 TS 4 e TS 4 2De THS !+ AL TS
K35 = DL, T2 4+ 0, TSP 120 TSI 4 42, TS |
Kt = 2 TS0 4 i TS 4 AL T SO
Kiejfl = H;lZY}(I)CZS/z;) + H§66Ti}cl Sjlll’ Kf;ksl = H_:ZZI;(I)COSJ'ZIZ
+ H§66Ti}c] Sjlll + A§44Ti(/)c05;11 (BD
where

a jr N a g'p. 3
Tf;:/o %%dxl,s;f=/ %%d}cz (32)
1 1 0 2 %

The components of stiffness matrix K# are defined as follows:

, x
Ky = o (TS + 153 ).
212 _  AY (G 11 ¢22
Kijkl Ty (Tik sz + Ty sz )
=X
ki3 = B (pogii _ i1 g0
ik = g \ ik 2 ik 2j )»
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Fig. 2. Flowchart of stochastic free vibration and buckling analysis of the FG microplates using PCE and MCS.

r14 _ 1 22 oll 1e2 Rl q02 235 _ 1| (x5 00 @22 | 02 g20 _ =11 gl1
Kl = 1 <B§(Tik Si +B{T, S;7 =BT, S} > Kl = 1 B, - D ) TS+ Ty Sy =Ty Sy
g1 ?{Tozsn _ prT2s!l _ pall g2 +51T00S” + B (11§20 _ 720611
ikt = 3 \ Pstic = ik 9 ik 250 ) s ik 21 s i 25 —Lie =g
122_‘4_1< 2611 4 il 22) 4 _ 137 (00 qoo 11 g1l
Kija = = TieSi + T Sii K = 7 [Hs (le Sip + 2T,y )
—x
k3B (pugn _pogn ?Tusoo_zl 71§20 4 plig0) 4 gr (72811 4711 g2
i = g e =i L= ) s ik 21 ik 251 T 90 s o T o
1 (ZF ; 1 [+
KX = 2 <B Ti 592 _ prr22git _ B”T.”S.22> KX = 2T (11§20 4 702511
ijkl 4 s ik 7l s Tik 2l s ik 2l ijkl 4 ik = jl ik = jl
—x T (702 20 | 1l @l 11¢22 | 722 oll
k73 = L (prrnginy prriigz _F po2gl) (s e myls) ) - nz (T s A7) )|
ijkl 4 s ik 2l s “ik Y jl s Tik 2 jl
) 1 [— —x
k2 < (o154 ) k= [ rsy wmpsy) « T sy
ij 4
T (720 o1, 702 gl 11¢22 | 722 oll
x (1S3~ TS -1 4+ TS +2m )l ) L (TS + TS ) v 1 (TS + 1) )| 33)

1

N _%x (TOOS 0oy 11S00> The components of mass matrix M are given by:
4 ik 2 jl ik = jl

1 _ 11.g00 pArl13 _ 11 00 apld _ 11 00
K421 [(E* 51) (Tzosoz 722 00 T“S“) Miji = 1Ty Sjp's Mijig = DTy i Mijig = 1Ty S
ijkl — 4 - ik D1 T Lik P T ik Pl 22 _ 00 ¢l1 23 _ 00 g1 25 _ 00 ol1
Y 4 i : s w s Mijkl - IOT[k Sjl ’Mijkl - IlTik Sjl ’Mijkl - JlTik Sjl
=X
X (720 o1l 11 20 7 1l 00 33 _ 00 ¢00 11 ¢00 00 ol1 34 _ 11 00
+K; (T:k SjI — T Sj1)+DsTik Sj]] Mijkl = 1Ty, Sj[ +1 (T:k Sjl + T SjI )’Mijk[_']2Tik Sjl’

35 _ 00 ¢11
Mijkl = DT Sj/

10
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Fig. 3. PDF and PoE of MCS and PCE for the fundamental frequency (Hz) of FG plates with SSSS, SFSF and CFCF BCs (p=1, a/h =5).

S0 M

44 11
M, k 21 Mijki

= — 00 11
ijkl = KT, = KT Sjl (C2

The critical buckling loads of the FG microplates can be obtained
from solving Eq. (29) by setting M = 0. For free vibration analysis,
the natural frequency » of the FG microplates can be solved from the
equation: (K — ©’M) d = 0 by denoting d () = de’®" and i? = —1, which
is imaginary unit.

4. Polynomial chaos expansion (PCE)
The PCE of real value random variables is investigated by starting

from a univariate case and passing to a multivariate one. The first step
of PCE is to approximate the responses, i, which is a quantity of interest

11

(Qol). In this paper, i is fundamental frequency or critical buckling
load of the FG microplates in terms of a truncated orthogonal series
as follows ([63,641):

P-1

i~ lpep (X) = 2 c;He, (q) +r
i=0

(35)

where dpcp is the response of interest obtained from the PCE; q is
a vector of independent random variables in PCE space mapped to
physical random parameters x; He; are multivariate orthogonal basis
functions; c¢; are coefficients to be determined so that the residual
r is minimized; P is the permutation of the qualified order of the
polynomial n, and the number of random variable d, which is given
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Fig. 4. PDF and PoE of MCS and PCE methods for the fundamental frequency (Hz) of FG microplates with SSSS, CSCS, CCCC BCs (p =5, h/l =1, a/h = 10).

by Askey’s scheme ([63]):

_(n+d)!
nld!
The second step is to estimate all associated coefficients. This task
can be easily obtained by forcing the residual minimum resulting in
the inner product of the residual and each basis function He; becomes
zero. By taking the inner product of both sides of Eq. (35) with respect
to He;:

(36)

P-1
(ﬁ,Hej>:2ci<He[,Hej> (37)
i=0

12

then enforcing the orthogonality of He ;> Eq. (37) becomes:

o= (He) 1 /aHe @d
"7 (He,,He;y  (He;, He;) iPo W

where He; is Hermite polynomial, and the “truth” response @ is un-
known, thus Gauss-Hermite quadrature approach is implemented for
computing ¢; as follows:

(38)

d
NEP

1 d A1 d 1 d
Z (wjl ><...ijd)Xu(qjl,,..,qjd)xHei (qjl,..., jd>

Ja=1

NI

gp
_ 1
G=L13y .

Vi ji=

39
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Fig. 5. PDF and PoE of MCS and PCE for the critical buckling load of FG plates with SFSF, SSSS, CFCF BCs under axial compression (p =1, a/h =5).

where y; = (He;, He;) can be analytically computed; N! is the number
of quadrature point; qj. and wj. are the set of quadrature points and their
weights, respectively for the random variable ith. For convenience, N’ é »

for each variable is chosen equally such that:
(40)

where N,, = n + | and the total number of Gauss points is at
least (n+ 1)¢. Note that in Eq. (39), @ q}l,...,qfd is the “exact”
response obtained from the “truth” computational model by solving
Eq. (29). It means that in order to estimate all polynomial coefficients

13

¢, (n+ DY FG microplate models need to be run for 4. For the third-
order PCE model of four random variables, for instance, (3 + 1)* = 256
“truth” samples (i.e., drawn from the FG microplate model represented
in Eq. (29)), which is considered as the total computational cost of
deriving PCE model, are needed.

Another advantage of PCE is that the mean and variance of the
response can be analytical estimated from its coefficients as:

Hy=E [ﬁPCE] = Co> E; =E [(ﬁPCE - ”ﬁ)z]

P-1 P-1
= chz (He;,He;) = Zcizy,- (41)
i=1 i=1
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Fig. 6. PDF and PoE of MCS and PCE for the critical buckling load of FG microplates with SSSS, CSCS, CCCC BCs under axial compression (p =5, h/l =1, a/h = 10).

Moreover, Sobol’ sensitivity indices can be also estimated directly from
the PCE coefficients in which §, is the first-order main effect, SkT is
the total sensitivity index of a random variable X, defined as follows

([65D:

(42)
where Dy = ¥, ¢} (He; (@), He; () and Df = ¥, ¢f (He; (@),

He; (q)) ; I}, includes all j such that the multivariate function He; (q)
only includes the variable g, (i.e, He; (q) = He; (g;)), while I includes

14

all j such that He;(q) must include the variable g,(i.e, He;(q) =
He; (qy - dy - 44))-

Fig. 2 describes the framework for probabilistically assessing the
responses of the FG microplates using both PCE and MCS.

5. Numerical examples

In this section, numerical examples are carried out to investigate

stochastic buckling and free vibration behaviours of the FG microplates
with different BCs in which the shear function ¥ (x3) = cot™! (L) -

X3
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Fig. 7. PDF and PoE of MCS and PCE for the critical buckling load of FG microplates with SSSS, CSCS, CCCC BCs under biaxial compression (p =5, h/l =1, a/h = 10).

16x3 . .
% ([62]) is selected. The FG microplates are supposed to be made
of a mixture of ceramic and metal whose mean material properties are

given as follows:

« MAT 1: Al,O; (E, = 380 GPa, p, = 3800 kg/m3, v, = 0.3), Al

(E,, = 70 GPa, p,, = 2702 kg/m?3, v,, = 0.3).
« MAT 2: Al,O3 (E, = 14.4 GPa, v, = 0.38), Al (E,, = 1.44 GPa,

v, = 0.38).

15

In order to investigate of the stochastic responses of the FG mi-
croplates, the material properties (E,, E,,, p., p,,) are assumed to be
randomly distributed via the lognormal distributions, and the coeffi-
cient of variation (COV) for all random variables is set to equal 10%.
The MCS with 10,000 samples is considered as the exact solutions for
comparison purpose.

For convenience, the following non-dimensional parameters are
used in the numerical examples:
wa* Pe

n \E,

B= (43a)
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Fig. 8. Probability density function (PDF) for the natural frequency and critical buckling load of SSSS FG microplates (a/h = 10) with various power-law index p(PCE order-3).

N Ncra2
Pvcr = 3
WE,

(43b)

For the convergence study, Table 2 shows the critical buckling loads
and fundamental frequencies of Al/Al,0; (MAT 1) square microplates
with length-to-thickness ratio (a/h = 10), power-law index (p = 1)
and thickness to material length scale parameter ratio (h/! = 1). The
results are calculated with various BCs and the same number of series
in x;— and x,— direction (N|; = N, = N). It can be seen from Table 2
that the results converge quickly, and the number of series N = 8 is
sufficient for the convergence and therefore this number will be used
in the following numerical examples.

16

5.1. Vibration analysis

In order to verify the accuracy of the present theory for vibration
analysis, Table 3 displays non-dimensional deterministic fundamental
frequencies of Al/Al,O; (MAT 1) microplates with SSSS and CCCC
BCs. Various values of p, /Il and a/h are considered. The obtained
solutions are compared with those reported by refined plate theory
(RPT) by He et al. [6] and Thai and Kim [56] using Navier solution
and Nguyen et al. [9] based on isogeometric analysis (IGA-RPT), and
by Thai et al. [13] using IGA-TSDT. It can be seen that there are good
agreements among the models.



V.-T. Tran, T.-K. Nguyen, P.T.T. Nguyen et al.

)

—e—ssS8 l
e et
10 -

-
0 o

™
<)

@,

Coefficient of variation (COV) %

p
a) hil=1
12
—e—S588S
11 | |=-#---CSCS ;W
ccee e

5}

©

Coefficient of variation (COV) %

5¢
4
1 2 3 4 5 6 7 8 9 10
p
b) h/l=5
R 12
< —6—S8S8S8S
11}|~+-cscs
Cccc

3 ©
'\

Coefficient of variation (COV

c) h/l=o

Fundamental frequencies

Thin-Walled Structures 177 (2022) 109473

Coefficient of variation (COV) %

N
w
IS
o
(2]
~
©
©
5

Coefficient of variation (COV) %

b) h/l=5

—6—S8SSS
X - CSCS
131} -—#*-CCCC

IS

Coefficient of variation (COV) %

c) h/l=00
Critical buckling loads

Fig. 9. Coefficient of variation (COV) with respect the power-law index p of the FG microplates (a/h = 10) with various BCs and h/I.

Stochastic vibration analysis employs four random variables (E,,, E,.,
Pm» P.) With the mean values of MAT 1. The MCS with 10,000 samples
is analysed for comparison purpose and used to investigate the per-
formance of the proposed PCE model. It should be noted that only 256
samples (see Eq. (36) for details) are needed for third-order PCE model.
The first four statistical moments of the fundamental frequency, namely
the mean, standard deviation (SD), skewness and kurtosis obtained
from the MCS and PCE models, for various values of p and a/h are
compared in Tables 4 and 5. It can be observed that all statistical
moments obtained from MCS and PCE show good agreements in all
cases. The required computational time of the present approach is
about 1/47 compared with direct MCS method. The mean values
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of fundamental frequencies for both PCE and MCS are close to the
deterministic ones for all BCs and different values of p. Interestingly,
although the COV of input random variables are kept the same, the
COV of fundamental frequency increases with the increase of p.

5.2. Buckling analysis

Table 6 illustrates the non-dimensional deterministic critical buck-
ling loads of Al/Al,O; (MAT 1) plates with SSSS and CCCC BCs for
various p and a/h. The obtained results are validated with those re-
ported by Thai et al. [13] and Thai et al. [57]. An excellent agreement
with previous ones can be observed. In order to further verify the
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Fig. 10. Quantile—quantile plot of PCE and MCS method for the fundamental frequency and critical buckling load with axial compression of FG plates with various BCs (p = 1,

a/h=5).

proposed method, the deterministic critical buckling loads of SSSS FG
microplates with MAT 2 under biaxial loads are also calculated. The
results are compared with those from Thai et al. [13] (IGA-TSDT) and
by Nguyen et al. [9] (IGA-RPT). It can be seen in Table 7 that the results
predicted by proposed model are in good agreement with those from
previous ones.

Two random variables E,,, E, with the mean values of MAT 1 are
considered for stochastic buckling analysis. It should be noted that only
16 samples required for third-order PCE model. The results of the FG
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plates and FG microplates with 4// = 1 for various BCs, p, a/h are given
in Tables 8-11. The statistical moments obtained from MCS and PCE
show good agreements. It is observed that the computational time in
this case is about 1/28 compared with direct MCS method. Again, the
mean values of critical buckling load for both PCE and MCS are close to
the corresponding deterministic responses. In contrast to fundamental
frequency, the COV of stochastic buckling loads decreases with the
increase of p.
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Fig. 11. Quantile-quantile plot of PCE and MCS method for the fundamental frequency and critical buckling load with axial compression of FG microplates with various BCs

(p=5, h/l =1, a/h = 10).

5.3. Reliability estimation and sensitivity results

Figs. 3-7 compare the probability density function (PDF) and prob-
ability of exceedance (PoE) of MCS and PCE for the vibration and
buckling analysis of the FG plates and microplates with various BCs.
It can be observed again that the results of MCS are in good agreement
with PCE. The effect of p on PDF for SSSS FG microplates with third-
order PCE model is plotted in Fig. 8. Interestingly, the uncertainty in
the buckling load appears larger (i.e., their distribution spreads wider)

with the decrease of p, which are in contrast with the fundamental
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frequency. It is consistent with what is observed from the comparison
of the COV of these stochastic responses shown in Fig. 9.

The linear quantile-quantile plots shown in Figs. 10 and 11 fur-
ther confirm the matching statistical distribution of the fundamental
frequencies and buckling loads computed from MCS and PCE. Thus,
the PCE method gives an affordable alternative solution to predict
the stochastic analysis of the FG microplates with multiple uncertain
material properties. Figs. 12 and 13 compare the sensitivity indices
based on the first-order and total Sobol indices for the vibration and
buckling analysis using MCS and PCE. It is seen that the Sobol indices
computed from the PCE are closely matched with those calculated from
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Fig. 12. First Sobol index of the random input variables with respect to the fundamental frequency and critical buckling load of SSSS FG microplates (p =5, a/h = 10).

MCS. It is observed that the sensitivity indices of mass densities (p,, p,,)
are higher than those of Young’s modulus (E,, E,,) for all cases.

6. Conclusions

A unified higher-order shear deformation plate theory for stochastic
vibration and buckling analysis of the FG microplates has been pro-
posed in this paper. It is developed from fundamental equations of the
elasticity theory. The solution field is approximated by bi-directional
series in which hybrid shape functions are proposed, then the stiffness
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and mass matrix are explicitly derived. By applying the polynomial
chaos expansion, only 256 and 16 samples are needed to compute
stochastic fundamental frequency and critical buckling load, which is
much less than the sample size of 10,000 of the Monte Carlo Simulation.
Numerical examples are investigated for different configurations of
material distribution, side-to-thickness ratio, and boundary conditions
on the natural frequencies and critical buckling loads of the FG mi-
croplates. The proposed unified size dependent plate model presents the
accuracy and efficiency in predicting stochastic vibration and buckling
behaviours of the FG microplates.
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A BCMO-ANN algorithm for vibration and buckling optimization of functionally graded porous (FGP)
microplates is proposed in this paper. The theory is based on a unified framework of higher-order shear
deformation theory and modified couple stress theory. A combination of artificial neural network (ANN) and
balancing composite motion optimization (BCMO) is developed to solve the optimization problems and predict
stochastic vibration and buckling behaviors of functionally graded porous microplates with uncertainties of
material properties. The characteristic equations are derived from Hamilton’s principle and approximation of

field variables under Ritz-type exponential series. Numerical results are obtained to investigate the effects of the
material distribution, material length scale, porosity density and boundary conditions on natural frequencies
and critical buckling loads of functionally graded porous microplates. The novel results derived from this paper
can be used as future references.

1. Introduction

The recent development of functionally graded porous (FGP) mi-
croplates with continuous material variations in a required direction
and significant porosity density requires advanced computational theo-
ries and models. However, it is well known that the classical elasticity
theory could not accurately predict the behaviors of such structures at a
small scale [1]. To overcome this problem, the material size-dependent
theory has been proposed to predict static and dynamic behaviors
of nano- and micro-structures using different approaches. The nonlo-
cal elasticity theory initiated by Eringen [2] can be used to capture
the size effects of nanostructures, and has been used for analyzing
functionally graded nanoplates [3-7], nano shells [8] and nanobeams
[9-14]. Nevertheless, the implementation of this theory for microplates
with different boundary conditions appears to be quite complicated.
Another way to investigate the size effects is to use the modified couple
stress theory (MCT) or modified strain gradient theory (MST). These
theories have been employed to predict the behaviors of isotropic and
functionally graded microplates with various displacement fields [15—
27]. Literature shows that the study of size effects on static and dynamic
responses of FGP microplates is still limited. Kim et al. [28] presented
static, free vibration and buckling behaviors of FGP simply-supported
microplates by using MCT, classical and first-order shear deformation
theories (FSDT). Fan et al. [29], Thanh et al. [30] investigated the
nonlinear buckling and vibration responses of FGP microplates using
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MCT, isogeometric approach and higher-order shear deformation the-
ory (HSDT). Guo et al. [31] investigated forced vibration responses of
exponentially FGP microplates under moving loads.

Moreover, to optimize static and dynamic behaviors of structures,
meta-heuristic optimization methods [32] are recently considered as
robust and reliable approaches for a wide range of complicated op-
timization problems, in which most of them was inspired by natural
phenomena such as Moth-Fame Algorithm (MFA) [33], Gravitational
Search Algorithm (GSA) [34], Firefly Algorithms (FA) [35], Memetic
Algorithm (MA) [36], Ant Colony Optimization (ACO) [37], Parti-
cle Swarm Optimization (PSO) [38], Differential Evolution (DE) [39],
Genetic Algorithms (GA) [40], Spotted Hyena Optimizer [41], etc.
Owing to its advantages, these optimization algorithms have been
applied for the optimization of functionally graded plates [42-46],
nanoplates [47] and micro-beams [48]. In practice, the algorithms
require dependent parameters and high computational costs. In order to
overcome this adverse, the Balancing Composite Motion Optimization
algorithm (BCMO) [49] has been recently developed, in which no
dependent parameters are required. This method is inspired by the
fact that the solution space is assumed to be in Cartesian coordinates
and the searching movements of candidate solutions are compositely
equalized in both global and local ones. In fact, a candidate solution
can move closer to better ones to exploit the local regions, and move
further to explore the search space. Thus, the best-ranked individual
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Ceramic

X1A/

Fig. 1. Geometry of a FGP plate.

in each generation can jump immediately from space to space or
intensify its current local space. The BCMO has been applied to opti-
mize behaviors of functionally graded plates [50,51]. Furthermore, the
machine learning, which involves an artificial neural network (ANN),
has been used to predict the behaviors of materials [52-60]. A literature
review shows that although many investigations on the optimization
analysis of composite/functionally graded plates have been done, as
far as the authors are aware, similar research on the FGP microplates
with uncertain materials is still very limited. Besides, the combination
between the BCMO algorithm and ANN to determine optimal responses
for FGP microplates with uncertainties of material properties has not
been developed yet. These are the main novelty and contributions of
this paper.

The objective of this paper is to predict optimal responses of natural
frequencies and critical buckling loads of FGP microplates subjected to
uncertainties of material properties. The theory is based on a unified
microplate model using a general framework of HSDT and MCT for
analyzing FGP materials. A combination of BCMO-ANN is proposed to
solve the optimization problems and predict stochastic vibration and
buckling behaviors of FGP microplates. The characteristic equations
are derived from Hamilton’s principle, and the Ritz-type series method
with hybrid shape functions is used to approximate the field variables.
Various configurations of the material distribution, material length
scale, porosity density and boundary conditions are investigated for
natural frequencies and critical buckling loads of FGP microplates.

2. Theoretical formulation

Consider a FGP rectangle microplate in the coordinate system
(1. X2, x3) with sides ax b and thickness h as shown in Fig. 1. The FGP
microplate is composed of a mixture of ceramic and metallic materials,
whose properties vary continuously in the thickness direction. The
mixture has a porosity with the volume fraction B. The effective
material properties of FGP microplates can be approximated by the
following expression [6,30,61]:

P() = (r- ) (2520

where P, and P,, are the properties of ceramic and metal materials,
respectively, which include Young’s moduli E, mass density p, Poisson’s
ratio v; f < 1 is the porous volume fraction; p is the power-law index
which is positive and x; € [—h/2,h/2].

+pm_§(pc+pm) @

2.1. Modified couple stress theory

The total potential energy of the FGP microplate is composed of the
strain energy ITgy, work done by membrane forces Iy, and kinetic

energy Il . Based on the MCT, the strain energy of the FGP microplate
is given by:

HSE=/ (og+my) dV @
|4

where ¢;; and y;; are components of strains and symmetric rotation
gradients, respectively; o;; is the component of Cauchy stress; m;; is the
high-order stress associated to the strain gradient y,;. The components

of strain and strain gradients are defined as follows:

1

& =5 (ui’j + ujyi) (3a)
1

Xij = Z (un,mjeimn + un,miejmn) (Bb)

where e;,,, is permutation symbol; u; is displacement. The stress com-
ponents are calculated from the constitutive equations as follows:

;) = Agyd;; + 2;45,-j (4a)

m;; = zﬂlz)(ij (4b)

where §;; is delta Kronecker; 4 and y are Lamé constants; / is material
length scale parameter (MLSP) which is used to measure the effect of
stress couple [62]. In practice, the MLSP depends on materials and size
of structures [63], which can be determined by experimental works
[64]. The work done by membrane compressive loads of the FGP
microplate is given by:

2 2
My = - /A [N? (0, ) + 2808, + N9 (a0, ]dA ®)

where N ?Ng and N ?2 are membrane compressive loads. The kinetic

energy of the FGP microplate ITx is expressed by:

= %/Vp(x3) (& + 2 +32) dv ©

where p (x3) is mass density of the FGP microplate; i) = uy,, i, = uy,
iy = uy, are velocities in x,—, x,— and x;— directions, respectively.
2.2. Unified higher-order shear deformation theory

The general higher-order shear deformation theory for FGP mi-
croplates is given by [59]:
u (xl,xz,x3) = “(1) (xl,xQ) + @, (x3) “g,l + @, (x3) 2} (xl,xz)
Uy (xl,xz,x3) = ug (xl,x2) + @, (x3) “g,z + o, (x3) 2 (xl,xz) (7
us (xl,xz,x3) = Mg (.Xl, x2)

where @ (x3) = H¥(x3) — x3. @, (x3) = H'¥ (x3); H* is the
transverse shear stiffness of the FGP microplates; f (x3) is a higher-

order term which must satisfy condition f; <x3 =i§) = 0 and
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_ rx3 2040fs _x3 J3
¥ (x3) = 0BGy 9% e )dx:; Substituting Eq. (7) into the

strains and strain gradlents in Eq. (3), the components of strains &/ =
[e1 enm 72 vz 1] and  strain gradients T =

[xii 12 2x12 x3 2xs  2x3) are obtained as follows:

£ =€ + @) (x3) €V + @, (x3) P + D5 (x5) € (8a)
A=A + & x " + Pyt P + By 3% + By 3y + Dy (8b)
where @; (x3) = H*¥W3 with V5 (x3) = fz(E:)) and,
o i o Yy
€ ) S I
8(0):”’8)’:<"(1)2+“21 ’8(1):<7512)>:<2"§,12”
7Y 0 ry 0
al Lo ] bl Lo
8(121) ?11
€5 922
@ = 3’3) =1P12+ @2 (9a)
al |
7 0
€y 0
ol | o
e =3y08=1 0 (9b)
VS) ¢ tug,
7’2) (20 “(3),2
“2,12 _”2,12 —92.1
_“(3),12 "g.z P12
1© = 1 u(3)~22 - ug’“ D = 1 “g,n - “g,zz 2O = 1 P11~ P22
2 0 2 0 2 @1 = P12
“(2),11 - “(1),12 0 0
“(2),12 - ”(1),22 0 0
(90)
0 0 0
0 0 0
7@ = L] 0 @ =1 0 { y® = L] 0 od)
2 0 2 0 2 0
_“(3)4,2 %) @211 — @112
u?,l P1 P212 — P12

The relationship between the stresses and strains of FGP microplates is
expressed as:

o1 O3 Qp O 0 0 ]leu
022 Op On 0 0 0 €22
G=q0p¢0=| 0 0 QOgs 0 0 712 ¢ = Q€ (10a)
o13 0 0 0 Oss 0 ||rs
023 | O 0 0 0 Ousl | 723
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my, [1 0 0 0 0 o][x,
oy 01 00 0 0f|rm
myy 00 1 0 0 Of|r
m=-+< v = 2/4[2 < = a;(lﬁxbx (10b)
mss 00 0 1 0 0f]rs
mys 00 0 0 1 Of|m
mys 00 0 0 0 1|z

where a, = 2ul?, Oy, E(sz)’ 0y = E(sz)’ O = VE(X3) Qy =055 =
Q E(XS)

=H= 0y

To derive the equation of motion, Hamilton’s principle is used:
5]
/ (6l g+ 6y, — 6 p)dt =0 amn
1

where the variation of the strain energy 611y, of the FGP microplate
is derived from Eq. (2) as follows:

5175E=/(058+m6x)dA
A

= / [M©Ose® + MDse® + MP 5@ + MP 5e®
A 12)
+MPsx @ + MPsy D + MY 5y @

AMP5x + MPsA® + M55V d 4

where the stress resultants are given by:

n/2
(MO, MB, MP MP) =/ (1,®,,®,,®;) 6dx;

—h/2

(13a)

(M 0 MO, M, MO, MY, M(S))
X
h/2
/ (L@ 5, Py3. P 33, Py 33, P,) Md x5 (13b)

These stress resultants can be obtained in terms of the strains and its
gradients as follows:

MO [A® B BE 0]
£ N

MO B DF D0 |]e®

) M? (= B D HE 0 |]le? (14a)

£ N s N

MO [0 0o o0 A]|e®
© [ . ™o = =X )(_

MP) |A* B B, B B BIff0

M B p b E E F 70

M| B D] H G T J|[y@

MO[T|F = & 5 5 &l (14b)
¥ B E . D D K N

M® =t — - = =1 _
8 ¥ ¥ b om Tl

MY = = =t = x”
4 B F, J K L H

where the stiffness components of the FGP microplate are defined as
follows:

/2
(A%, B, D, HE, BE, DS, AY) = /7’1/2 (1,00, &3, &), 0, &), d%) Q,dx;
(15a)
—y =1 =X =X —r =z =X =X
(AI,B BB ,BS,B{> = (AI,B BB B, BY ) Iy
n2 (15b)
= /h/z (L@ 3,D) 5, P 33, D1 33, D) @, I X3
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(ﬁl,ﬁf,ﬁx,ff,ff) = (B{Bf,f*,ff,ff)lwé
/2 (15¢0)
= o2 D3 (D)3, D)3. D) 33 Dy 33 D) @, Lgyed X3

(MG 1T) = (A6 T 7 ) I

h/2
= /h/2 D)3 (D3, D) 33, Dy 33, D) &, e d s (15d)
=X =X —y =X — = =Xy =X —y
<D D, K H,,L ,Hf) = <D D, K/ H,.L ,H;f)l6X6
(15e)

hy2
Z/h/2 (¢‘1 33 @1330233. @1 330, D3 33, Py 33D, D3 )"llsxsdxa

The variation of work done 617y, by membrane compressive loads
derived from Eq. (5) is given by:

6HV=—/NO <u216u21+u226u82)d}1 (16)
" 1943, 2043,

where it is assumed that N? = Ng =N O,N?Z = 0. The variation of
kinetic energy 611 derived from Eq. (6) is calculated by:

Sy = %/ p (i 81y + ity 811y + 1138113) dV
|4

= E/A [IZ (“2,15”(3),1 +ug’25u2,2> + K, ((pl&pl + (p25(p2)

Iy ()60 + i 6ul + asul) + I, (u‘l’aug,l +u 5i) +ideus , + ug’zaag)
+J) (1966, + ¢,60% + 1566, + ¢p26115)
0y (i8530 + 91608, +18 450, + 251, ) | d A
a7)

where 1,1, 1,,J;,J,, K, are mass components of the FGP microplate
which are defined as:
n/2

(03,@,0,,@,, @, @, 1) pdx; (18)

(KpoJo, J12 1, 1y 1) :/
—h/2

3. Ritz method

Based on the Ritz method, the membrane and transverse displace-
ments, rotations (u(l),ug,ug,(pl,(pz) of the FGP microplate can be ex-
pressed in terms of the series of approximation functions and associated

values of series as follows:

ny ny
u(xy, x0,0) = ) Zul,j Ry (x1) Py (x3) (19a)
i=1 j=
ny my
(x,,xz,t)—ZZuzu OR; (x;) P (x;) (19b)
i=1 j=
no Ny
3(xl,xz,t)— 22”311 (O R; (x)) (x ) (190)
i=1 j=
ny ny
@1(x1,xp,1) = Z 2 x;; (DR (x1) P (xp) (19d)
i=1 j=1
ny
Pa(x1, X, = 0Dy (DR (x1) P (%) (19)

i=1 j=1

where uy;;, uy;;, u3;;, X;;, y;; are variables to be determined; R; (x;) and
P; (x,) are the shape functions in x,—, x,— direction, respectively. As
a result, the five unknowns of the FGP microplate only depend on the
two shape functions. It should be noted that the accuracy, convergence
rates and numerical instabilities of the Ritz solution depend on the
construction of shape functions, which has been discussed in [65—
68]. The functions R; (x;) and P; (x,) are constructed to satisfy the
boundary conditions (BCs) (see Table 1) in which the simply-supported
and clamped—clamped BCs are as follows:
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+ Simply supported (S): ug = ug = ¢, = 0at x; = 0,a and
u?=u2=(p1 =0at x, =0,b

+ Clamped (C): u(l) = ug = ug =@, =¢,=0atx; =0,aand x, =0,b

The combination of simply-supported, clamped boundary conditions
on the edges of the FGP microplate leads to the different BCs as
follows: SSSS, CSCS and CCCC will be considered in the numerical
examples. Substituting Eq. (19) into Egs. (17), (16) and (12) and then
the subsequent results into Eq. (11) lead to the following characteristic
equations of motion of the FGP microplate:

Kd+Md=0 (20)

whered = [u;, uw, wuw; x y]T is the displacement vector to be
determined; K = K¢ + K* is the stiffness matrix which consists of
the strains K¢ and the symmetric rotation gradients K#; M is the mass
matrix. The components of stiffness matrix and mass matrix are defined
in details in [25]. Furthermore, it is worthy to note that for buckling
analysis, the critical buckling loads of the FGP plate can be obtained
from Eq. (20) by setting M = 0. For free vibration analysis, by denoting
d(t) = de where w is the natural frequencies of the FGP microplate
and i> = —1 is the imaginary unit, the natural frequencies can be
derived by solving the following equation: (K — w’M)d = 0.

4. ANN-BCMO algorithm
4.1. Optimization problem

The objective of the optimization problem in this study is to search
for the optimal material properties of the FGP microplate that can
maximize the natural frequencies or critical buckling loads subjected to
several constraints. The Young’s modulus and mass densities are con-
sidered as design variables. The formulation of constrained objective
functions for vibration optimization can be generally stated as:

Maximize @ = f (E.;, Ep i\ Peir i)

c,i>

(K—o’M)d=0

E <E.,<E

c,min = ~e,i = He,max

<E ,<E

m,min = mi = m,max

Subjected to < E 21)

pc,min < pc,i < pc,max

pm,min < pm,i < pm,max

The formulation of constrained objective functions for critical buckling
loads of the FGP microplate can be expressed as follows:

=/ (EcirEny)

Maximize N,

M=0
Subjected t0 { E, pin < E¢; < E,max (22)
Em min S Eml S Em max

where E,min = E,mean - S%E,mean’ E,max = EA,mean + S%E,mean’ Pmin =

P mean ~ 5%p,mean and Pmax = P.mean T 5%p,mean; E,mean and P mean aAr€
the mean values of Young’s modulus and mass density of constituent

materials, respectively.
4.2. Balancing composite motion optimization
Initiated by Le-Duc et al. [49], the BCMO is a population-based opti-

mization method, in which the main idea of this approach is to balance
individual composite motion properties in the global optimum. The
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Start

v

Randomly initialize population with NP individuals

Solve objective function values, and ranking
individuals according to their objective function values

A

Create trial vectors u, , and determine x,,,,

\ 4

Assign u] =x;, , i=2

A 4

Update position

of i, assign i=i+1

i> NP

Solve objective function values, and rank individuals
according to the values of the objective function

Stopping conditions
satisfied

l

Show optimization results

Fig. 2. Flowchart
equalization of global and local searching through a probabilistic model
of selection generates a movement mechanism for each individual.

Initialization: The population distribution is randomly initialized as
follows:

x,-:le.“+rand(1,d)><(xfj—xj’,“) (23)

End

of the BCMO algorithm.

where xL and xU are the lower and upper bounds of the i individual; d
is number of items. The objective function values of the population f (x)
is then evaluated and all individuals are ranked based on the sorting
f (x) as follows:

x = arg sort { f (x)} (24)
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Output layer

Output layer

Qutput

Fig. 3. An artificial neural network structure.

Table 1
Approximation functions of series solutions with different BCs.

Boundary conditions Approximation functions

R, (x)) Py ()
SSSS X (a—xl)e’% X, (b—xz)e’/;2
CSCs xf (a—xl)e’% xg (h—x2)e’ﬂ
CccC xf ((l—xl)2 e xi (b—xz)2 e

Table 2
Convergence study of the series solution of Al/Al,O; FGP plates with different boundary
conditions (a/h =10, p=10, f=0.1, h/l = 1).

Solution Number of series n=n; =n,

2 4 6 8 10 12
Normalized fundamental frequency
SSSS 7.6675 7.5748 7.5508 7.5531 7.5523 7.5529
CSCS 11.8257 11.4713 11.4652 11.4652 11.4652 11.4652

CCCC 16.4080 16.3353 16.3332 16.3281 16.3285 16.3283
Normalized critical buckling load with axial compression (N?, NJ,N?, =1,0,0)

SSSS 21.3756  21.1557 20.9383 20.8252  20.8263 20.8258
CSCS 42.7373 40.1757 39.0022  38.8722 38.8720  38.8721
CCcC 75.9027  74.8932  72.6642  72.4134  72.4140  72.4135

Instant global point and best individual: The instant global point
Xy, is defined by the previous best of x’l’1 with respect to a trial

using the objective function.

woif () <f ()

25)
-1 :
X} otherwise

w A . . . . )
here ’lls determined using the current generation’s population infor

mation as follows:

wp =u, +v (26)

t t
k12 T Vst
where u, is the midpoint of the design space [LB,U B], which is
expressed as follows:

_LB+UB

, ! @7)

Table 3
Normalized fundamental frequency of simply supported FGP microplates with
a/h = 20.

B h/l Theory P
1 2 5 10
0 oo Present 4.5218 4.1098 3.8921 3.7631
IGA [16] 4.5228 4.1101 3.8884 3.7622
10 Present 4.6387 4.2122 3.9707 3.8305
IGA [16] 4.6351 4.2111 3.9688 3.8316
5 Present 4.9612 4.4980 4.2000 4.0302
IGA [16] 4.9568 4.5006 4.2005 4.0324
2 Present 6.7964 6.1561 5.5531 5.2202
IGA [16] 6.7948 6.1565 5.5551 5.2212
1 Present 11.1206 10.0595 8.8270 8.1468
IGA [16] 11.1043 10.0451 8.8287 8.1496
0.2 oo Present 4.2063 3.4871 3.0203 2.9228
IGA [16] 4.2068 3.4871 3.0179 2.9184
10 Present 4.3259 3.6089 3.1042 2.9862
IGA [16] 4.3331 3.6038 3.1056 2.9849
5 Present 4.6960 3.9324 3.3551 3.1733
IGA [16] 4.6914 3.9330 3.3550 3.1752
2 Present 6.6954 57322 4.7415 4.2613
IGA [16] 6.6819 5.7303 4.7440 4.2686
1 Present 11.2241 9.7475 7.9145 6.8643
IGA [16] 11.2026 9.7395 7.9132 6.8669
where v} K2 is the relative motions of the individual k,th with respect
to the individual k,th; v}, /) is the relative motions of the individ-
ual k,th with respect to the previous best one. U;C] /K2 and v?{z /1 are
determined using L; ¢ = 1 as follows:
Vi = @ (xj—x,.),aij=LLS><dvij (28)

where dv;; is a vector that can be calculated by the trial number T'V;

rand(1,d) if TV;>05
dv;; = (29)
—rand(1,d) otherwise
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Table 4
Mean and standard deviation (SD) of normalized fundamental frequency for FGP
microplates with a/h = 10 and SSSS boundary condition.

Y} p h/l Theory Mean SD Time (s) Present
0.1 1 10 Ritz-BCMO 4.4049 0.0496 615 4.4073
BCMO-ANN 4.4090 0.0491 10
5 Ritz-BCMO 4.7449 0.0517 620 4.7485
BCMO-ANN 4.7451 0.0513 9
1 Ritz-BCMO 11.0692 0.1051 617 11.0673
BCMO-ANN 11.0745 0.1059 11
10 10 Ritz-BCMO 3.3994 0.0953 625 3.4012
BCMO-ANN 3.4040 0.0961 10
5 Ritz-BCMO 3.5922 0.0997 623 3.6001
BCMO-ANN 3.6037 0.0993 12
1 Ritz-BCMO 7.5662 0.1991 627 7.5531
BCMO-ANN 7.5376 0.1983 10
02 1 10 Ritz-BCMO 4.2436 0.0509 630 4.2482
BCMO-ANN 4.2456 0.0512 11
5 Ritz-BCMO 4.6082 0.0522 624 4.6121
BCMO-ANN 4.6074 0.0530 11
1 Ritz-BCMO 11.1087 0.1075 628 11.1145
BCMO-ANN 11.1292 0.1066 12
10 10 Ritz-BCMO 2.8681 0.1277 631 2.8822
BCMO-ANN 2.8645 0.1274 12
5 Ritz-BCMO 3.0547 0.1323 630 3.0723
BCMO-ANN 3.0676 0.1309 10
1 Ritz-BCMO 6.7642 0.2269 628 6.7687
BCMO-ANN 6.7623 0.2270 11

Composite motion of individuals in solution space: In BCMO, v; is
the motion of the global search, which is determined by:

v; =@ (xol-,,—xj) (30)

where «; is considered as the first-order derivation of the motion

j
distance (x,;, — X;), that leads to:

a; = Lgg x dv, (€20)]
where
1
e dNPj if TV;>05
Lgs = 3 (1 )2 (32)
d NP)'j .
e otherwise

where NP is the population size and dv; is the vector that can be
calculated by the trial number T'V:

rand(l,d) if TV;>0.5
dv,-j =
—rand(1,d)

(33)

otherwise

The distance from the jth individual to O,, call r; is calculated by:

(34)

ry= ”xj — X0in
The probabilities of these v;;, cases are equal and can be determined
as follows:

P(vy) =P (v;)xP(v;) =05%05=025 k=1,...,4 (35)

The updated position of the ith individual at the next generation is:

X=Xt 4o, (36)

The flowchart of the BCMO algorithm is illustrated in Fig. 2 (more
details about the BCMO algorithm can be found in [49]).

4.3. ANN-BCMO algorithm

The Artificial Neural Network (ANN) system shown in Fig. 3 con-
tains three kinds of layers, namely, input layer, hidden layer, output
layer in which each layer consists of neurons that are connected to
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each other in the previous layer. The input data from the outside are
multiplied by the weights before they reach the nodes. Each node in
the next layer will get a sum of the output values of the previous nodes
multiplied with respective weights. The output data of the activation
function for the sum is expressed as follows:

Imy_y
=0 () = «J< > utxy b?) @7)
=1

where y! and x] are data pair output and input of activation function
of node i, respectively; w;’j" is the weight between the output node
i and input node j; b} is the bias of node j; ¢ is the activation
function. Moreover, it is known that the activation function plays an
important role in defining the output signal of each neuron in each
layer of a neural network. Different activation functions have been,
therefore, developed in the literature [69]. For the present study, the
activation function used to update weight and bias values is based on
the Levenberg-Marquardt optimization [70,71].

Furthermore, a loss function is required to evaluate the performance
of the prediction model. The objective of loss function is to measure the
difference between target values and predicted ones, from which during
the training process, the difference between the model outputs and
the target values are converged to zeros. The loss functions are hence
constructed to deal with different kinds of optimization problems.
In practice, the mean square error (MSE) [72] is commonly used to
evaluate the accuracy of the prediction model. It is also considered as
a loss function during training process of the ANN. The statement of
MSE is illustrated as follows:

1 Im
MSE= % (y-5)" (38)
1
where /m is the number of training samples; y; is the actual output data;
y; is the predicted value of the ith— sample.

5. Numerical examples
In this section, numerical examples are performed to investigate

stochastic vibration and buckling responses of FGP microplates with
three kinds of boundary conditions (SSSS, CSCS, CCCC), in which the

16x3
shear function ¥ (x3) = cot™! % - 15;2 [67] is used. The FGP

microplates are supposed to be composed of a mixture of ceramic and
metal materials whose mean properties are: Al,O5 (E, = 380 GPa, p, =
3800 kg/m?3, v, = 0.3), Al (E,, = 70 GPa, p,, = 2702 kg/m3, v,, = 0.3),
whereas for stochastic analysis, Young’s moduli and mass densities are
assumed to be randomly distributed via a uniform distribution.

For simplicity, the following normalized response parameters are
used in the numerical examples:

—  wd? Pe

o= - Ec (39a)
N N, craz

Ne=13 E (39b)

In order to study the convergence of present solutions, Table 2 shows
nondimensional deterministic critical buckling loads N,, and funda-
mental frequencies w of the Al/Al,O; square FGP microplates with
a/h = 10, p = 10, 1/l = 1 and p = 0.1. The results are calculated
for three types of BCs (SSSS, CSCS and CCCC) and the same number
of series type-solution in x;— and x,— direction (n; = n, = n). The
responses show a rapid convergence for a number of series n = 8, hence
this number will be used for the numerical examples.

5.1. Vibration analysis
In order to verify the accuracy of the present theory in predicting

vibration behaviors, Table 3 displays normalized deterministic funda-
mental frequencies of Al/Al,0; FGP microplates with simply supported
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Fig. 4. Scatter plot of the Ritz-BCMO model with ANN-BCMO on the normalized fundamental frequency for FGP microplates with different boundary conditions, p =1, a/h = 10

and h/l = 1.

boundary condition in which the results are computed with mean
material properties, side-to-thickness ratio a/h = 20, power-law index
p = 1,2,5,10, porosity parameter f = 0,0.2, and material length scale
h/l = ,10,5,2,1. The obtained solutions are compared with those
from Farzam et al. [16] using a refined HSDT (RPT) and isogeometric

approach (IGA). It can be observed that there are good agreements be-
tween the two models for all cases. Therefore, the present model shows
to be reliable to predict the dynamic behaviors of FGP microplates.

Moreover, in order to investigate stochastic behaviors of FGP mi-
croplates, four random variables of material properties (E,, ;. E, ;. p;»
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Fig. 5. Probability density function (PDF) of Ritz-BCMO and BCMO-ANN methods for normalized fundamental frequency of FGP microplates with different boundary conditions,

p=1, a/h=10 and h/I = 10.

p.;) are employed with the population size NP = 500. It is noted
that the weight and bias values are automatically updated according
to Levenberg-Marquardt optimization, the number of nodes in each
hidden layer is 21. The dataset, which consists of input-output pairs
and training samples are randomly generated through iterations in the

ANN training process. In addition, in the prediction process, training
samples in the dataset are divided into two groups, in which 80%
pairs in data is used for the training set and 20% for the test set.
Tables 4-6 present the mean and standard deviation (SD) of normalized
fundamental frequencies of Al/Al,0; FGP microplates with different
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Fig. 6. Loss function of the normalized fundamental frequency for FGP microplates with different boundary conditions, p = 10, a/h = 10 and h/I = 5.

boundary conditions for both Ritz-BCMO and BCMO-ANN models. The
solutions are computed with porous parameter f = 0.1 and 0.2, side-to-
thickness ratio a/h = 10, two values of the power-law index p = 1 and
p = 10, length scale parameter 4/l = 10, 5, 1. It can be seen that the
statistical moments of normalized fundamental frequencies obtained
from the Ritz-BCMO and BCMO-ANN show great agreements in all

10

cases. The mean values of nondimensional fundamental frequencies for
both Ritz-BCMO and BCMO-ANN are close to the deterministic result
for all BCs, different power-law index p and porosity parameter /.
As expected, the natural frequencies decrease with an increase of the
porosity density, power-law index and length scale parameter. Regard-
ing the computational cost, it can be observed that the computational
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Fig. 7. Regression of the normalized fundamental frequency with log transfer function for FGP microplates with full clamped boundary condition, p = 10 and a/h = 10.

time required by the present Ritz-BCMO method is about 55 times
larger than that by the present BCMO-ANN method.

In order to demonstrate the performance of present model further,
Figs. 4 and 5 present the scatter plots and probability density func-
tion of the Ritz-BCMO model with BCMO-ANN one of the normalized
fundamental frequencies for FGP microplates with different boundary
conditions, p = 1, a/h = 10, h/l = 1 and h/I = 10, respectively. These

11

graphs indicates that the present BCMO-ANN model can effectively
substitute the Ritz-BCMO for stochastic analysis with accuracy and
significant saving of computational time. Additionally, Figs. 6 and 7
show the loss function and linear regression of normalized fundamental
frequencies of FGP microplates with p = 10, a/h = 10, f = 0.1 and 0.2.
Obviously, MSE is smaller than 10~* for both the training set and test
set.
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Fig. 8. Probability density function (PDF) of Ritz-BCMO and BCMO-ANN methods for the normalized critical buckling loads of FGP microplates with different boundary conditions,
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5.2. Buckling analysis

The accuracy study of present theory in predicting buckling behav-
iors is carried out in Table 7, which illustrates nondimensional deter-
ministic critical buckling loads with biaxial compression of Al/Al,04
FGP microplates with clamped boundary conditions on its edges. The
results are reported with the side-to-thickness ratio a/h = 20, various
values of the power-law index p = 1,2, 5, 10, two porous parameters f§ =

12

0 and 0.2, and compared to those derived from Farzam et al. [16]. It is
observed that there are no significant differences between the models,
it shows that the present theory is reliable in predicting buckling
behaviors of FGP microplates.

Moreover, in order to investigate stochastic buckling behaviors of
FGP microplates, two random variables of Young’s moduli (E,,;. E, ;)
are supposed to be randomly distributed with the same population
size and number of nodes per hidden layer, training sample process as
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Fig. 9. Prediction of ANN of the normalized critical buckling loads for FGP microplates with different boundary conditions, p = 10, a/h =10, h/I =1 and  =0.1.

the vibration analysis. Tables 8 and 9 present the mean and standard
deviation of normalized critical buckling loads obtained from Ritz-
BCMO and BCMO-ANN models for Al/Al,O; FGP microplates with
different boundary conditions. The buckling responses are computed
for the side-to-thickness ratio a/h = 10, porous parameter f = 0.1 and
0.2, power-law index p = 1 and 10, length scale parameter i/l = 1
and 10. It can be seen that the statistical moments of the critical

13

buckling loads obtained from the Ritz-BCMO and BCMO-ANN show
good agreements in all cases. The mean values of nondimensional
critical buckling loads for both Ritz-BCMO and BCMO-ANN are close
to the deterministic results for all BCs, different power-law index
p and porosity parameter f. Similar to the vibration behaviors, the
critical buckling loads decrease with an increase of the porosity density,
power-law index and length scale parameter. For the computational
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Table 5
Mean and standard deviation (SD) of normalized fundamental frequency for FGP
microplates with a/h =10 and CSCS boundary condition.
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Table 8
Mean and standard deviation (SD) of normalized critical buckling loads for FGP
microplates with axial compression, a/h = 10 and different boundary conditions.

BCs Y} p h/l  Theory Mean SD Time (s) Present BCs Vil p h/l  Theory Mean SD Time (s) Present
CSCS 0.1 1 10 Ritz-BCMO  5.9709 0.0661 629 5.9773 $$SS 0.1 1 10 Ritz-BCMO 8.3720  0.2417 297 8.3650
BCMO-ANN 59776 0.0666 11 BCMO-ANN 83790  0.2436 9
5  RitzBCMO  6.5932 0.0697 628 6.5935 1  RitzBCMO  52.8194  1.8771 300 52.7334
BCMO-ANN  6.6068 0.0703 12 BCMO-ANN 528290  1.8545 9
1  RitzBCMO  16.9205 0.1596 630 16.9323 10 10 Ritz-BCMO 4.2241 0.0116 298 4.2227
BCMO-ANN  16.9302 0.1595 11 Ritz-MCS 42242 0.0116 10
10 10 Ritz-BCMO  4.5456 0.1275 628 4.5427 1 RitzZBCMO  20.8353 0.1537 301 20.8252
Ritz-MCS 4.5391 0.1287 11 BCMO-ANN  20.8384  0.1533 11
5  Ritz-BCMO  4.8913 0.1382 631 4.9086 02 1 10 Ritz-BCMO 6.9308  0.1916 305 6.9123
BCMO-ANN  4.9023 0.1370 10 BCMO-ANN  6.9324 01919 10
1  RitzBCMO  11.4432 0.3015 630 11.4652 1  Ritz-BCMO  47.4213 1.6199 299 47.3156
BCMO-ANN  11.4558 0.3012 11 BCMO-ANN  47.4764  1.6166 8
02 1 10 RitzBCMO  5.7790 0.0689 620 5.7776 10 1  RitzBCMO  14.5998  0.1151 306 14.5857
BCMO-ANN  5.7884 0.0683 11 BCMO-ANN  14.6030  0.1147 9
5  Ritz-BCMO  6.4178 0.0737 625 6.4255 CSCS 01 1 10 RitzBCMO 127296  0.3869 304 12.7081
BCMO-ANN  6.4172 0.0736 10 BCMO-ANN  12.7162  0.3848 9
1  RitzBCMO  17.0373 0.1633 623 17.0376 1 RitzZBCMO  100.2965 3.7066 299 100.0118
BCMO-ANN  17.0405 0.1631 10 BCMO-ANN  100.1583 3.7333 10
10 10 Ritz-BCMO  3.8388 0.1654 619 3.8509 10 10 Ritz-BCMO 6.2015 0.0138 298 6.2020
BCMO-ANN  3.8154 0.1669 10 BCMO-ANN  6.2013 0.0137 10
5  Ritz-BCMO  4.2145 0.1769 621 4.2046 1 Ritz-BCMO  38.8945 0.3129 300 38.8722
BCMO-ANN  4.2134 0.1762 12 BCMO-ANN  38.9022  0.3105 10
1 RitzBCMO  10.3099 0.3396 623 10.3087 02 1 10 RitzBCMO  10.5596  0.2964 303 10.5590
BCMO-ANN  10.2909 0.3409 11 BCMO-ANN  10.5602  0.2956 9
1 Ritz-BCMO  90.2539 3.1370 302 90.0581
BCMO-ANN  90.2883 31192 9
10 1  RitzZBCMO  27.4031 0.1820 307 27.4193
BCMO-ANN  27.4036  0.1825 8
Table 6 CCCC 0.1 1 10 RitzBCMO  19.8302  0.6129 299 19.7962
Mean and standard deviation (SD) of normalized fundamental frequency for FGP B_CMO'ANN 19.8289 0.6077 10
microplates with a/h =10 and CCCC boundary condition. 1 Riz-BCMO  188.9939 7.0268 301 188.4538
- BCMO-ANN  188.9322  7.0447 9
BGs # »p NI Theory Mean SD Time (s) Present 10 10 RitzBCMO 92737  0.0156 306 9.2742
CCCC 0.1 1 10 Ritz-BCMO  7.8171 0.0853 626 7.8053 BCMO-ANN  9.2735 0.0155 10
BCMO-ANN  7.8213 0.0848 11 1  Ritz-BCMO  72.4573 0.5968 304 72.4134
5  RitzZBCMO  8.7926 0.0918 628 8.7911 BCMO-ANN 724720  0.5943 108
BCMO-ANN  8.8009 0.0916 11 02 1 10 RitzBCMO 165572  0.4758 298 16.5561
1 RitzBCMO  24.2602 0.2261 622 24.2394 BCMO-ANN  16.5580  0.4750 9
BCMO-ANN  24.2660 0.2246 10 1 Ritz-BCMO  170.5385 5.9719 302 170.1653
10 10 Ritz-BCMO  5.8450 0.1658 629 5.8401 BCMO-ANN  170.8541 5.9297 9
Ritz-MCS 5.8386 0.1659 11 10 1  Ritz-BCMO  51.2885 0.3034 299 51.3261
5  RitzBCMO  6.4137 0.1806 624 6.4284 BCMO-ANN  51.2984  0.3020 8
BCMO-ANN  6.4515 0.1806 12
1 RitzBCMO  16.3403 0.4260 630 16.3281
BCMO-ANN  16.3219 0.4286 12
02 1 10 RitzBCMO  7.5722 0.0897 623 7.5793 cost, the BCMO-ANN method again requires less computational time
BCMO-ANN  7.5727 0.0884 10 than the Ritz-BCMO method, in which the computational time of the
5  RitzBCMO  8.5922 0.0947 625 8.6040 . . .
BCMO-ANN  8.5938 00946 10 BCMO-ANN method is about 1/30 times that of the Ritz-BCMO one.
1 RitzBCMO  24.4008 0.2330 619 24.4211 Furthermore, the performance in predicting buckling responses of the
BCMO-ANN  24.3982 0.2328 12 present BCMO-ANN is also illustrated in Figs. 8-11, in which the mean
10 10 Ritz-BCMO  4.9445 0.2153 631 4.9617 square error is smaller than 10~* for both training and test sets.
BCMO-ANN  4.9350 0.2156 12
5  RitzBCMO  5.5006 0.2257 630 5.5266 .
BCMO-ANN  5.4974 0.2265 12 6. Conclusions
1 RitzBCMO  14.6568 0.4808 628 14.7174
BCMO-ANN  14.6502 0.4800 11 Optimal behaviors of natural frequencies and critical buckling loads
of FGP microplates with uncertainties of material properties has been
presented in this paper. It is based on a unified framework of higher-
order shear deformation theory and modified couple stress theory for
Table 7 analysis of FGP materials. A combination of BCMO-ANN has been

Normalized critical buckling loads of FGP plates with biaxial
and CCCC boundary condition.

compression, a/h = 20

B Theory P
1 2 5 10
0 Present 12.5415 9.7627 8.1499 7.3803
IGA [16] 12.5747 9.7903 8.1821 7.4115
0.2 Present 8.7149 5.5752 3.8308 3.4123
IGA [16] 8.7341 5.5870 3.8437 3.4270

14

proposed to solve the optimization problems and predict stochastic
vibration and buckling behaviors of FGP microplates subjected to un-
certainties of material properties. The effects of material distribution,
material length scale, porosity density and boundary conditions on
natural frequencies and critical buckling loads of FGP microplates
have been investigated for both Ritz-BCMO and BCMO-ANN algorithm.
Based on the obtained numerical results, the following important points
can be derived:

» Hybrid series solutions with exponential shape functions converge
quickly, number of series n = 8 assure the convergency of the
solution field with different boundary conditions.
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Fig. 10. Regression of the normalized critical buckling loads with log transfer function for FGP microplates with axial compression, different boundary conditions, p = 1 and

a/h

=10.

« Present unified higher-order shear deformation theory and modi-
fied couple stress theory are found to be accurate and efficient in

predicting stochastic behaviors of FGP microplates.

+ Natural frequencies and critical buckling loads decrease with an
increase of the porosity density, power-law index and material

length scale parameter.

» Proposed BCMO-ANN algorithm allows to significantly save com-
putational costs. The computational time of natural frequencies

required by the BCMO-ANN method is about 1/55 times that

of the Ritz-BCMO method, the computational time of critical
buckling loads by the BCMO-ANN method is about 1/30 times

that of the Ritz-BCMO method.
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Table
Mean

9
and standard deviation (SD) of normalized critical buckling loads for FGP

microplates with biaxial compression, a/h = 10 and different boundary conditions.

BCs p p  h/l Theory Mean SD Time (s) Present
SSSS 01 1 10 Ritz-BCMO 4.1910 0.1248 300 4.1847
BCMO-ANN  4.1931 0.1244 10
1 Ritz-BCMO  26.4796 0.9498 303 26.3915
BCMO-ANN  26.4859 0.9461 9
10 10 Ritz-BCMO 2.1124 0.0055 305 2.1124
Ritz-MCS 2.1125 0.0054 10
1 Ritz-BCMO  10.4221 0.0848 302 10.4126
BCMO-ANN  10.4204 0.0841 10
02 1 10 Ritz-BCMO 3.4483 0.1695 300 3.4580
BCMO-ANN  3.4518 0.1680 9
1 Ritz-BCMO  23.7306 0.8426 299 23.6802
BCMO-ANN  23.7248 0.8419 9
10 1 Ritz-BCMO 7.2935 0.0593 307 7.2996
BCMO-ANN  7.2956 0.0590 10
cscs 0.1 1 10 Ritz-BCMO 6.7126 0.1933 301 6.6947
BCMO-ANN  6.7152 0.1939 9
1 Ritz-BCMO  52.1365 1.8639 297 52.0159
BCMO-ANN  52.1189 1.8692 9
10 10 Ritz-BCMO 3.2940 0.0078 302 3.2948
BCMO-ANN  3.2943 0.0078 10
1 Ritz-BCMO  20.2335 0.1634 305 20.2364
BCMO-ANN  20.2339 0.1624 9
02 1 10 Ritz-BCMO 5.5669 0.1480 301 5.5564
BCMO-ANN  5.5687 0.1480 9
1 Ritz-BCMO  46.8068 1.7522 303 46.8299
BCMO-ANN  46.8647 1.7555 8
10 1 Ritz-BCMO  14.2630 0.1006 300 14.2691
BCMO-ANN  14.2676 0.0998 9
cccc 01 1 10 Ritz-BCMO  10.6631 0.3327 308 10.6407
BCMO-ANN 10.6714 0.3348 11
1 Ritz-BCMO  99.3258 3.7428 304 98.9116
BCMO-ANN  99.3542 3.7597 10
10 10 Ritz-BCMO 5.0716 0.0100 305 5.0732
BCMO-ANN  5.0714 0.0100 9
1 Ritz-BCMO  38.0749 0.3189 301 38.0524
BCMO-ANN  38.0630 0.3173 10
02 1 10 Ritz-BCMO 8.9167 0.2517 299 8.8781
BCMO-ANN 8.9151 0.2516 10
1 Ritz-BCMO  89.5446 3.2452 301 89.2872
BCMO-ANN  89.3834 3.2320 9
10 1 Ritz-BCMO  26.9385 0.1637 300 26.9569
BCMO-ANN  26.9352 0.1641 9
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Thermal buckling and vibration behaviors of functionally graded (FG) sand- Received 18 January 2023
wich microplates are investigated by using a unified higher-order shear Accepted 28 April 2023
deformation theory and stochastic collocation (SC) method. Uniform and
linear distributions are considered for thermal effect and lognormal distri-
butions are.used to characterize the variability of the .matsarials' prpperties. modified couple stress

The governing equations are derived by using Harr_nltons principle and theory; Monte Carlo
solved by Ritz's approach. To demonstrate the effectiveness and accuracy Simulation; stochastic

of the current model, the results from SC are compared with those from collocation method; thermal
Monte Carlo Simulation. The effects of boundary conditions, temperature buckling and vibration
distribution, thickness-to-length ratio, material scale characteristics and

power-law index on the fundamental frequencies and critical buckling tem-

perature of the FG sandwich microplates are investigated. The FG sand-

wich microplates’ stochastic analysis provides some new findings that may

be utilized as references in the future.
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1. Introduction

Potential engineering applications for functionally graded (FG) microplates with continually
changing in material properties have been investigated in literatures [1-5]. Consequently, several
methods have been proposed to consider the effects of small-scale phenomena using various
nano- and micro-scale theories [6-9]. These methods with different displacement fields have been
used to predict the static and dynamic behaviors of microplates [10-14] and nanostructures
[15,16]. Bensaid et al. [17] presented the size-dependent of FG sandwich nanobeams with the
Eringen’s nonlocal elasticity theory. Daikh et al. [18-20] investigated the bending, free vibration
and buckling analysis of sandwich FG nanoplates under different boundary conditions using the
higher-order shear deformation theory (HSDT). Besides, temperature environment can have vari-
ous effects on plates, depending on the material and temperature range it is exposed to. Thus, the
study of size-dependent FG microstructures in this environment has been attracted by many
researchers. Aria et al. [21] demonstrated the hygro-thermal behavior of FG sandwich microbe-
ams using nonlocal elasticity theory. Shojaeefard et al. [22] used classical plate theory (CPT) and
first-order shear deformation theory (FSDT) to investigate the temperature-dependent of FG por-
ous circular microplates under a nonlinear thermal load. Thai et al. [23] analyzed the post-
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buckling of FG microplates subject to mechanical and thermal loads using isogeometric analysis
and third-order shear deformation theory (IGA-TSDT) based on the modified strain gradient the-
ory (MST). Farzam et al. [10] investigated the size-dependent analysis of FG microplates with
temperature-dependent material properties using MST and IGA-refined plate theory (RPT). The
study of how temperature affects the behavior of FG plates has generated significant interest [24-
29]. Zenkour and Sobhy [30] studied the thermal buckling of various types of FG sandwich plates
using the sinusoidal shear deformation theory. Fazzolari et al. [31] studied thermal buckling of
FG sandwich plates using a refined quasi-3D theory. Daikh et al. [32-37] studied the thermal
buckling, bending analysis of FG sandwich beams/plates resting on elastic foundations using a
HSDT. The enhanced radial point interpolation mesh-free technique was used by Do et al. [38]
to study the thermal buckling of FG sandwich plates. Sahoo et al. [39] investigated nonlinear
vibration of FG sandwich structures under thermal loadings. The hydro-thermo-mechanical
effects on static responses of FG plates have been studied by Mudhaffar et al. [40] by using a
HSDT and Navier method. Daikh et al. [41] studied the thermal buckling of FG sandwich cylin-
drical shells with the simply supported boundary conditions by using the Donnell theory. It is
important to remember that the properties of the material may be uncertain in actuality [42-46],
owing to the manufacturing process or other unexpected situations. This uncertainty alters the
static and dynamic behaviors of the structures, necessitating the use of sophisticated computa-
tional techniques. Almost all FG microplate research [47] has primarily concentrated on deter-
ministic evaluation, disregarding the effect of random material properties. The most common and
straightforward approach for addressing this challenging issue is the Monte Carlo Simulation
(MCS) method [48], which was used for the laminated composite plates [49-51] and FG plates
[52,53]. However, this method can result in high computing costs, especially when a complex
physical model is considered. An alternative approach is to use polynomial chaos expansion
(PCE), which can accelerate the computation while maintaining accuracy, as a way to overcome
the limitations of MCS. The fundamental goal of this technique is to approximate random out-
puts as a series of basis functions and their corresponding coefficients in orthogonal space. The
behaviors of FG plates and laminated composite with material uncertainty have been analyzed
using this method [53-61]. Stochastic collocation (SC) [62-64] is known as one of stochastic
expansion method similar to the popular PCE. This method allows for the efficient and accurate
computation of statistics and solutions of mathematical models that involve stochastic input
parameters. It is particularly useful in the field of uncertainty quantification, where it can be used
to estimate the propagation of uncertainties in physical systems or to quantify the sensitivity of
system response to uncertain parameters. It derives the Lagrange interpolation polynomials for a
set of collocation points and reproduces the model responses at these collocation points as of
expansion coefficients. After reviewing the literature, it becomes evident that although several
studies have been conducted on the random reactions of FG plates, there is still a lack of research
on the stochastic behavior of FG sandwich microplates in a temperature environment.
Additionally, the SC method has not been extensively applied to address such complex issues.
Thus, this paper seeks to fill this gap in previous studies and make unique contributions to the
field.

The objective of this study is to propose a stochastic model by combining a general HSDT,
SC, and MCT for free vibration and thermal buckling of FG sandwich microplates. The governing
equations of motion are derived using Hamilton’s principle, and after that, it is solved by the
bidirectional series type with hybrid form functions. To assess the accuracy of the proposed SC
model, a MCS with ten thousand samples is considered as a reliable benchmark. For various con-
figurations of boundary conditions, material distribution, material uncertainty parameters on the
thermal buckling load and fundamental frequencies of the FG sandwich microplates, numerical
results are shown.
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2. Theoretical formulation

In the coordinate system (x,x2,x3), the FG sandwich rectangular microplate is considered in
Figure 1 with thickness h and sides a x b. The microplate is made up of two FG faces comprised
of ceramic-metal components and a homogenous core.

2.1. Material properties and temperature distribution

The following formulas can be used to evaluate the effective material properties of FG sandwich
microplates:

Q(x3) = (Qc - Qm)Vc(x3) +Qm 1)

where the volume fraction of the ceramic material V,(x3) across the plate thickness is determined
by [65]:

e\ P
(%) , z3<x3<zg FG top  layer
Ve(xs) = 1 7 <x3 <z3 ceramic core layer (2)
_2\P
(%) z1<x3< 2 FG bottom layer

with the power-law index p, Q. and Q,, are the characteristics of ceramic and metal materials,
respectively, such as the Young’s moduli E, mass density p, and Poisson’s ratio v.

For the effect of the thermal field, two types of distribution temperature are considered as
below [31, 66]:

e For uniform distribution (UTR): T(z) = T, + AT, the bottom surface’s reference temperature
is T,.

e For linear distribution (LTR): T(z) = (T; — Tp) (£ +3) + T}, temperatures at the top and bot-
tom of the plate surface are represented by T, and T}, respectively.

2.2. A size-dependent model for FG sandwich microplates
The displacement field using a general HSDT as follows [66]:
U1 (X1, %2, X3) = U] (x1,%2) 4+ Do (x3) @y (x1,%2) + Py (x3)183 | (3a)

(X1, X2, X3) = U (%1, X%2) + Do (X3) 05 (%1, X2) + Py (x3)113 (3b)

.

L a ]

Figure 1. Geometry of a FG sandwich microplate.
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U3 (X1, X2, %3) = U3(X1, %) (30)

in which ®@,(x;) = H*¥(x3) — x3, ®2(x3) = H*W(x3); H® is the FG sandwich microplates’ trans-
verse shear stiffness.
Total potential energy of system can be calculated by using Hamilton’s principle:

153
J (6Myk + oMlyx — Ollgx)dt =0 (4)
3}
where 0I1yk, 0llkk, 6Ilyx are the variations of strain energy, kinetic energy, and work done by
membrane compressive forces, respectively.

The variation of strain energy oIlyx is obtained by the modified couple stress theory (MCT)
(8]:

o1, = J (mdy, + 6d)dA 5)

A

where the high-order stress m is related to the strain gradients y, and ¢ is Cauchy stress. The fol-
lowing definitions describe the elements of strain ¢; and strain gradients y; :

1
gij = E (ui,]- —+ uj,i) (63)
1/~ -
1 =3 (Qw‘ + 9]',1') (6b)
— 1
0; = Ecurl(ui) (6¢c)

The following constitutive equations are used to determine the stress components:
2
0ij = AekOij + 2uei; my = 2uly; (7)

where A, u are Lamé constants; 5,-j is Kronecker delta and [ is material length scale parameter
(MLSP) which is used to measure the effect of coupled stress [67]. MLSP can be determined by
experimental works [9] and has value of zero for macro plates.

Substituting Eq. (3) into Eq. (6a), the in-plane and out-of-plane strains &’ = [g() ¢ ] are
calculated as:

e = g0+ @) (x3)e!) + y(x3)e”); £ = D3(x3)e") (8)
where @;3(x3) = H® X % and,
0 1 2
851) ”(1),1 3%1) ”g,u 3%1) ?1,1
e = Sgg) = ”8,2 el = 851; = “2,22 &) = 8;2; = P2,2
20 ud , +uy | iy 2u§ |, el ?1,2+ P21
(9a)
(0) 0
3 _J) "3 _{(p1+“3,1} (
¥ = = 9b)
{ V(zg> } ¢y + u(s),z
The symmetric rotation gradients are calculated by Egs. (3) and (6¢):

1

_ 1
0, = 5(”3,2 —Uy3) = 3 (u3,2 — @y 303, — Dy 50,) (10a)
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— 1

1
0, = 5(“1,3 —Uz1) = 3 (—u§,1 + @y 5u3 1 + (D2,3§01) (10b)
— 1 11, 0
05 = E(”Z,l —Ui,2) = 3 [uz,l — U2+ Doy — 401,2)} (10¢)
The rotation gradients are stated as follows by substituting Eq. (10) into Eq. (6b):
Y= (I)z)((s) + (1)2,33)((4) + (1)1’33)((3) + (Dz,sx(z) + q)mxm + X(O) (11)
in which XT = [Xu T2 2A12 X3z 203 2X23] and,
U3, 1 —ud 12 —P21
—u‘;n Mg,u ?1,2
0 _ 1 U — U3y m _ 1 gy — 1l 5, @ _ 1) @1 — P22
1= 5 > X = 5 ’ ’ > X = 2 (12a)
0 0 P21~ P12
”(2),11 - “(1),12 0 0
“(2),12 - u(l),ZZ 0 0
0 0 0
0 0 0
1 0 1 0 1 0
() — (O (O 12b
x 5 o (% 2 o [ F 5 0 (12b)
_”(3),2 — Py ®2,11 — P112
”2,1 Py P2,12 = P1,22
Additionally, the following constitutive equations connect the stresses and strains:
A a1 Qu Qi 0 &1 o
6 ={0ynp=|Qa2 Q2 0 &n p = le)*l(l) (13a)
o12 0 0 Qs Y12
©_Jos|_|Qs 0 Y13 L _ 0).0)
o = =Q "¢ 13b
{023} { 0 Qa2 R (13b)
my [1 0 0 0 0 0] (1,
Mo 0100 0 0]
m 0 01 0 0 O )
m= 2l 2ul? el o Isxe, (13¢)
ms3 000 1 0 0] s “
a3 000 0 1 0]z
mis 0000 0 1|y,
where o, = 2uP’, Qi = f(,%, Q= f‘,"iﬁ , Q= %, Qu = Qs5 = Qe = = 21(51(?3)
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According to Eq. (5), the variation of strain energy varies as follows:
5HUK = J moy + 6d€)d

P61 4+ P& 4 PO 4 POy 0 (14)

I
ey
"
=

+PM oy M + PRy + PPy 4 PWoy@ + P;5>5x<5>] dA

where
h/2 n/2
(B0, 2020) = [ (10,0100 80 = [ 000 (152)
—h)2 —h)2
12
(P(Xo), Pil), Pf), P, Pi4), PE(S)) = J (1, @y,3, Dy,3, @y, 33, Dy, 33, D2 )mdx; (15b)

—h/2

The stress resultants can be defined as follows:

p A° B B 0] (s©
O] B D D¢ 0 W (162)
fLp = ’ 16a
p? B: D' H' 0 |]¢®
p) 0 0 0 A°|]|eg®
P(O) r = =7 = = T
7 A” B* B, B" B, B!| (40
(1) % ™. ™. L T T
P, B D' D! E° E[ F,||[,0
2 4 L g/t 4 T/ 4
P 5o 25, s 0 L X(z) (16b)
P B E' G' D' D, K‘'|]| ¥
| |B B ¥ D m ©||*
po | [B F 7 K L[ mlz”
where the stiffness components are defined by:
h/2
(A%, B, D", HY, B, D) = J (1,®,, D2, @2, ®,, ®,®,) Q" dxs (17a)
—h/2
h/2
Al = J ®2Q") dx; (17b)
—h/2
(A B"B. B B, B:) = (445 5.5 5B ) Lo
2 (170)

= J (1, @y, 3, Dy, 3, Dy, 33, Dy, 33, Do) oty Ig s dx3
Zij2



JOURNAL OF THERMAL STRESSES . 7

(D* D%, B L F) = (D', D, B BL FY) s

h/2
(17d)
= J(D1,3(®1,3>(Dz,3,(D1)33>‘D2,33,‘D2)9€116x6dx3
“h/2
h/2
(ﬁf,af,ixjx) = (HZ,Gf,TXjX)Ism = J Dy 3(Dy, 3, Dy, 33, Dy, 33, a0ty Igwsdx3 (17e)
“h/2
=1 =1 =y =1 —y =1 =1 =y =1 =1 .,
(D ,D.,K,H,,L ,Hf) = (D ,D,, K, H.,L ,Hf)lGx6
h/2 (170
= J <q>i33,@1,33(1)2,33,(Dl,ssq)z,(Dg,w‘Dz,ssq)z,(b%)dxlwéd%
“h/2
The variation of work produced by in-plane thermal load (Nj) as follows:
Sk = — JNé (ug)léug,l + ug)zéugj)dA (18)
A
where
N{ = [7(Qu+ Qu)eATdz; i=1,2,3; j=234 (19)

in which « is the coefficient of thermal expansion; AT = T(z) — T, is the current temperature’s
deviation from reference one T°.
The variation of kinetic energy o[ [, is represented as follows:

1
STk = Ejp(aléal + ity ity + it Bity)dV

14

1
= EJ [Io (@000 + idoinl + u3oil) + I (1'4‘1)51'42’1 il 00 + idoid , + i‘g,zéitg)
A

12 (33,100, + 9100, + 82,00, + 9200, ) + Ka(9100, + 0,00,)

(20)

11 (0000, + 100 + 200, + po0id) + I (0, + 04, )| da
where p(x3) is mass density; 1 = uy;, Uy = U, Uz = Uz, are velocities in x; —, x— and x;3—
directions, respectively, and Iy, I1, I, J1, 2, K3, are defined as:
h/2
(IO)ID IZ:]I:]Z:KZ) = J (]-’(Dly (D§>(D23 (DI(DL(D%)des (21)
—h/2

3. Series of approximation functions of the FG sandwich microplate

According to the Ritz technique, the following series type solution of approximation functions
and related series values may be used to represent the transverse and membrane displacements,
rotations, (u9,u), u3, @1, ¢,) of the FG sandwich microplates:
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Table 1. The shape function for three types of boundary conditions (BCs).

Approximation functions

BCs Ri(x1) P;(x2)
5555 xi(a—x)e”s xa(b—x)e %
Cscs X2(a—x)e s X(b—x,)e
ccce X(a—x;)le s Kb —x,)%e 't

Table 2. Convergence study for critical buckling temperatures analysis of FG sandwich microplates for various BCs (h// =5,
a/h =10, p = 0.5) under uniform distribution with biaxial compression.

Number of series N = N; = N,

Solution
2 4 6 8 10 12
(MAT 1, 1-2-1)
SSSS 0.9955 0.9777 0.9774 0.9771 0.9770 0.9772
CSCS 1.7221 1.6223 1.6203 1.6198 1.6196 1.6197
cccc 2.6960 2.6709 2.6639 2.6636 2.6638 2.6637
Ny N,
{1 (1, 200 ), 1 (e 20, 1) =D > {un(£), x5(8) R 1 (x1) Py (x2) (22a)
i=1 j=1
N N,
{ug (xly X2, t)> Oy (xl » X2 t)} = Z Z {Uzij(t>,yij(t> }R,-(xl )Pj)z(Xz) (22b)
=1 j=1
N, N
ug(xl,xz, t) = ZZ u3ij(t)Ri(x1)Pj(x2) (ZZC)
i=1 j=1

where w1, Usjj, Uz, Xij, yij are variables that need to be calculated; the shape functions in the x;—
and x,— directions are represented by R;(x;), Pj(xz). Thus, just two shape functions are required
to find five unknowns of the microplate. It should be clearly explained that the shape functions
have an impact on the Ritz solution’s precision, convergence rates, and numerical instabilities, as
detailed in prior research [68-71]. The boundary conditions (BCs) that the clamped (C) and sim-
ply-supported (S) ones follow are satisfied by the functions R;(x;) and P;(xz) :

e Simply supported (S): u) =u) =@, =0atx; =0,aand u® =uj =@, =0atx, =0,b
e Clamped (C): ) =u) =ud =¢, =@, =0atx; =0,aand x, =0,b

The following BCs: SSSS, CSCS, and CCCC are produced when S and C are present on the
edges of FG sandwich microplates and will be examined in the numerical examples. Table 1 con-
tains a list of the hybrid shape functions R;(x;) and P;(x;) for the various BCs in this study. The
characteristic equations of motion of the FG sandwich microplates are given by substituting
Eq. (22) into Egs. (20), (18), and (5) and then incorporating the outcomes into Eq. (4) as follows:

Kd + Md=0 (23)
whered=[u; w, u; @ (pz]T is the displacements vector to be calculated; K = K* + K* is

the stiffness matrix which is made from the symmetric rotation gradients K%, strains K* and
mass matrix is M. The following details are provided:
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Table 3. Non-dimensional critical buckling loads of square SSSS FG sandwich microplates (MAT 2) (a/h = 10) with biaxial
compression.

p h/l Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0 [eS) Present 6.5028 6.5028 6.5028 6.5028 6.5028 6.5028
MCT [74] 6.5244 6.5244 6.5244 6.5244 6.5244 6.5244
5 Present 7.6525 7.6525 7.6525 7.6525 7.6525 7.6525
MCT [74] 7.6507 7.6507 7.6507 7.6507 7.6507 7.6507
5/3 Present 16.8490 16.8490 16.8490 16.8490 16.8490 16.8490
MCT [74] 16.6536 16.6536 16.6536 16.6536 16.6536 16.6536
1 Present 35.2385 35.2385 35.2385 35.2385 35.2385 35.2385
MCT [74] 34.6404 34.6404 34.6404 34.6404 34.6404 34.6404
1 [e%S) Present 2.5838 2.9203 3.0972 3.2326 3.4749 3.7534
MCT [74] 2.5925 2.9301 3.1077 3.2435 3.4867 3.7662
5 Present 3.2653 3.6956 3.8959 4.0704 4.3440 4.6693
MCT [74] 3.2609 3.6906 3.8908 4.0649 4.3383 4.6632
5/3 Present 8.7161 9.8974 10.2848 10.7723 11.2954 11.9955
MCT [74] 8.5680 9.7282 10.1120 10.5884 11.1065 11.7939
1 19.6139 22.2967 23.0585 24.1715 25.1938 26.6433
MCT [74] 19.0532 21.6545 224164 23.4849 24.5068 259187
5 [e%S) Present 1.3294 1.5215 1.7020 1.7900 2.0562 2.3675
MCT [74] 1.3337 1.5266 1.7077 1.7960 2.0632 2.3756
5 Present 1.6980 2.0469 2.2664 24197 2.7380 3.1275
MCT [74] 1.6960 2.0445 2.2636 24168 2.7346 3.1231
5/3 Present 4.6463 6.2490 6.7810 7.4568 8.1917 9.2066
MCT [74] 4.5696 6.1430 6.6668 7.3276 8.0512 9.0429
1 Present 10.5408 14.6501 15.8069 17.5270 19.0950 21.3603
MCT [74] 10.2367 14.1766 15.3203 16.9495 18.4979 20.6714
10 [e%S) Present 1.2439 1.3734 1.5461 1.5976 1.8540 2.1401
MCT [74] 1.2479 1.3779 1.5514 1.6029 1.8603 2.1474
5 Present 1.4413 1.7118 1.9372 2.0199 2.3532 2.6647
MCT [74] 1.4115 1.6816 1.8885 1.9710 22723 2.6059
5/3 Present 3.919% 5.5886 6.1450 6.8379 7.6059 8.6601
MCT [74] 3.8578 5.4951 6.0425 6.7211 7.4766 8.5067
1 Present 8.6748 13.0792 14.3174 16.1503 17.8273 20.2462
MCT [74] 8.4504 12.6622 13.8814 15.6153 17.2662 19.5807
Kgll KEIZ K§13 Kg14 KflS
TRY? &2 K& R4 RS
K = [TK"” TK® K K™ K| with &= {ey) (24)
TKCfl4 TK§24 TK§34 K44 e
TK§15 TKéZS TKéSS TK{45 KC“SS

where the components of the stiffness matrix K¢ and mass matrix M can be found more details in [61].

By solving Eq. (23) with M =0 and accounting for Eq. (19), it is possible to determine the
thermal buckling of the FG sandwich microplates. Their natural frequency @ can be computed
using equation: (K — ®?*M)d = 0 by designating d(t) = de’”’ and > = —1, which is imaginary
unit.

4, Stochastic collocation (SC)

In this paper, material properties are treated as random variables, which leads to random
responses of the model, such as fundamental frequency or thermal buckling load. These stochastic
responses can be effectively represented using a SC method.

For 1-D problem (i.e., one random input X) and #; interpolation points, it approximates the
stochastic response u by forming the Lagrange functions and estimating the model response at
interpolation points u(g;) as follows [72,73]:
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Table 4. Non-dimensional critical buckling temperature T, of square SSSS FG sandwich microplates (MAT 1) under uniform
distribution with biaxial compression.

a/h p h/l Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1
5 0.5 00 Present 2.8652 2.8237 2.8582 2.8263 2.8652
HPT [30] - - 2.8632 2.8322 2.8697
HPT[32] 2.8707 2.8302 - 2.8322 2.8697
10 Present 3.0391 2.9952 3.0275 2.9963 3.0336
5 Present 3.5609 3.5097 3.5356 3.5064 3.5387
2 Present 7.2172 7.1128 7.0927 7.0784 7.0753
1 Present 20.2608 19.9707 19.7861 19.8241 19.6944
2 0 Present 2.6301 2.3961 24177 2.3595 2.4279
HPT [30] - - 24183 2.3599 2.4287
HPT[32] 2.6345 2.3963 - 2.3599 2.4287
10 Present 2.8142 25734 2.5903 2.5336 2.5987
5 Present 3.3664 3.1055 3.1083 3.0558 3.1
2 Present 7.2302 6.8289 6.7329 6.7105 6.6972
1 Present 21.0124 20.1094 19.6617 19.7458 19.4885
10 0.5 00 Present 0.8006 0.7895 0.8036 0.7920 0.8072
HPT [30] - - 0.8059 0.7945 0.8092
HPT[32] 0.8031 0.7922 - 0.7945 0.8092
10 Present 0.8445 0.8327 0.8464 0.8349 0.8496
5 Present 0.9761 0.9625 0.9745 0.9636 0.9771
2 Present 1.8983 1.8713 1.8719 1.8646 1.8694
1 Present 5.1908 5.1170 5.0767 5.0822 5.0556
2 0 Present 0.7169 0.6498 0.6612 0.6414 0.6656
HPT [30] - - 0.6621 0.6423 0.6668
HPT(32] 0.7178 0.6507 - 0.6423 0.6668
10 Present 0.7633 0.6945 0.7047 0.6853 0.7089
5 Present 0.9024 0.8285 0.8351 0.8168 0.8381
2 Present 1.8758 1.7663 1.7484 1.7374 17418
1 Present 5.1513 5.1143 5.0090 5.0241 4.9683

Table 5. Non-dimensional critical buckling temperature T, of square

with biaxial compression, T, = 25°C.

SSSS FG sandwich microplates under linear distribution

a/h p h/l Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1
5 0.5 00 Present 5.6189 5.5292 5.3622 5.5293 5.5998
HPT [30] - - 5.4417 5.6144 5.6894
HPT[32] 5.6914 5.6105 - 5.6144 5.6894
10 Present 5.9600 5.8650 5.6798 5.8620 5.9289
5 Present 6.9831 6.8723 6.6328 6.8598 6.9160
2 Present 14.1524 13.9264 13.3052 13.8469 13.8268
1 Present 39.7280 39.0998 37.1151 38.7782 38.4860
2 00 Present 5.1581 4.6895 4.3583 4.6133 4.7424
HPT [30] - - 4.4071 4.6699 4.8074
HPT[32] 5.2103 4.7427 - 4.6699 4.8074
10 Present 5.5190 5.0366 4.6695 4.9536 5.0760
5 Present 6.6017 6.0777 5.6031 5.9745 6.0768
2 Present 14.1778 13.3634 12.1359 13.1187 13.0802
1 Present 41.2017 39.3500 35.4382 38.6005 38.0611
10 0.5 00 Present 1.5708 1.5466 15167 1.5502 1.5782
HPT [30] - - 1.4972 1.5391 1.5685
HPT[32] 1.5562 1.5344 - 1.5391 1.5685
10 Present 1.6569 1.6313 1.5885 1.6341 1.6613
5 Present 1.9149 1.8853 1.8289 1.8857 1.9101
2 Present 3.7231 3.6646 3.5122 3.6483 3.6539
1 Present 10.1790 10.0190 9.5235 9.9421 9.8801
2 00 Present 1.4067 1.2725 1.1925 1.2549 13014
HPT [30] - - 1.1731 1.2347 1.2837
HPT[32] 1.3856 1.2515 - 1.2347 1.2837
10 Present 1.4976 13599 1.2708 1.3406 1.3855
5 Present 1.7703 1.6221 1.5060 15977 1.6376
2 Present 3.6790 3.4571 3.1521 3.3973 3.4026
1 Present 10.4936 10.0084 9.0288 9.8221 9.7038
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Table 6. Non-dimensional critical buckling temperature T, of square FG sandwich microplates (MAT 1) under uniform distri-
bution with biaxial compression.

BCs p h/l Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1
Cscs 05 00 Present 42188 4.1548 4.1877 4.1550 41920
10 Present 45793 45102 45388 45036 45412
5 Present 5.6498 55657 55812 5.5502 55776
2 Present 13.0949 12,9023 12.8237 12.8234 12.7779
1 Present 39.5812 39.0115 38.5968 38.7035 383992
2 00 Present 3.9457 3.6089 36173 3.5456 3.6242
10 Present 43266 3.9758 3.9747 3.9069 3.9778
5 Present 5.4591 5.0670 5.0370 4.9780 5.0287
2 Present 13.3304 12.6528 12.4203 12.4232 123328
1 Present 41.3300 39.6361 38.6845 38.9069 38.3152
cecc 05 00 Present 6.0403 5.9696 5.9703 59712 5.9830
10 Present 6.7604 6.6550 6.6614 6.6319 6.6559
5 Present 8.8280 8.6919 8.6757 8.6523 8.6555
2 Present 232428 228973 22,6967 22.7331 22.5951
1 Present 74.4843 73.4092 72.5563 72.8005 72.1597
2 00 Present 5.8827 53268 52999 52335 52793
10 Present 6.5364 6.0414 5.9914 5.9246 5.9784
5 Present 8.7276 8.1530 8.0464 7.9963 8.0113
2 Present 23.9800 22.8551 22.3528 22.4250 221628
1 Present 78.1686 75.0826 73.1813 73.6825 724412

a/h=10
Cscs 05 00 Present 1.2629 1.2447 1.2646 1.2478 1.2698
10 Present 1.3546 1.3340 1.3533 1.3364 1.3576
5 Present 16242 1.6010 1.6170 1.6011 16198
2 Present 35111 3.4605 34532 3.4448 3.4456
1 Present 10.2315 10.0853 9.9942 10.0122 9.9487
2 00 Present 1.1380 1.0329 1.0486 1.0189 1.0553
10 Present 1.2337 1.1251 1.1384 11094 1.1441
5 Present 1.5198 1.4006 1.4067 13799 1.4097
2 Present 35114 33192 3.2751 32633 32585
1 Present 10.6067 10.1548 9.9316 9.9733 9.8451
cecc 05 h/l=1 Present 1.9793 1.9499 1.9779 1.9508 1.9854
10 Present 21554 2.1239 2.1499 21253 21541
5 Present 26817 26424 26614 26319 26636
2 Present 63550 6.2624 62357 62286 62173
1 Present 19.4421 19.1633 18.9723 19.0172 18.8798
2 00 Present 1.7995 1.6372 1.6558 16148 1.6632
10 Present 1.9849 1.8154 1.8306 1.7888 1.8377
5 Present 25416 23515 23524 23146 23540
2 Present 6.4214 6.0892 59919 5.9838 5.9545
1 Present 20.2446 19.4079 18.9595 19.0571 18.7855
ni

u(X) ~ i(X) = u(qi)Liq) (25)

i=1

where ¢ is a standard variable mapping to the physical variable X and for maximizing perform-
ance of this approach, g; are defined as appropriate Gauss quadrature points corresponding to
the distribution of g. More specifically, g could be normal, uniform or exponential variable, and
q; are probabilistic Gauss-Hermite, Gauss-Legendre or Gauss-Laguerre quadrature points, respect-
ively. The 1-D Lagrange interpolation L;(q) is defined as:

g —qj
Li(q) = T —
=g (26)

A tensor product of 1-D functions is applied to expand the SC approximation to the multi-

dimensional space. Particularly, the expansion of d-variable and #; collocation points for the k'
variable can be expressed as:
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Table 7. Non-dimensional critical buckling temperature T, of square FG sandwich microplates (MAT 1) under linear distribu-
tion with biaxial compression, T, = 25°C.

BCs p h/l Theory 1-0-1 2-1-2 2-2-1 1-1-1 1-2-1
a/h=5
Cscs 0.5 00 Present 8.2731 8.1351 7.8562 8.1208 8.1926
10 Present 8.9800 8.8310 8.5147 8.8104 8.8749
5 Present 11.0790 10.8976 10.4700 10.8576 10.9002
2 Present 25.6773 25.2613 24.0553 25.0843 24.9704
1 Present 77.6111 76.3782 72.3996 75.7077 75.0373
2 00 Present 7.7376 7.0658 6.5206 6.9356 7.0788
10 Present 8.4844 7.7805 7.1646 7.6383 7.7694
5 Present 10.7051 9.9158 9.0793 9.7320 9.8218
2 Present 26.1390 24.7593 22.3865 24.2862 24.0863
1 Present 81.0401 77.5589 69.7241 76.0570 74.8287
Cccc 0.5 00 Present 11.3498 11.6886 11.0893 115192 11.6801
10 Present 13.2567 13.0291 12.4996 12.9769 13.0029
5 Present 173110 17.0191 16.2743 16.9250 16.9179
2 Present 455751 44.8296 425747 44.4686 44.1542
1 Present 146.0485 143.7224 140.0998 142.4044 141.0091
2 0 Present 11.3820 10.4687 9.5652 10.4857 10.3737
10 Present 12.8190 11.8248 10.8069 11.5793 11.6859
5 Present 17.1112 15.9533 14.5040 15.6295 15.6496
2 Present 47.0206 44.7227 40.2883 43.8378 43.2838
1 Present 153.2727 146.9189 139.8997 143.0374 141.4751
a/h=10
Cscs 0.5 00 Present 24771 2.4377 2.3737 24416 24823
10 Present 2.6548 2.6122 2.5393 2.6150 2.6538
5 Present 3.1858 3.1354 2.0526 3.1329 3.1664
2 Present 6.8856 6.7759 6.4783 6.7391 6.7339
1 Present 200628 19.7461 18.7476 19.5854 19.4417
2 00 Present 2.2323 2.0222 1.8907 1.9928 2.0618
10 Present 2.4200 2.2026 2.0526 2.1697 2.2354
5 Present 2.9809 2.7417 2.5362 2.6985 2.7540
2 Present 6.8860 6.4958 5.9037 6.3800 6.3647
1 Present 20.7985 19.8714 17.9010 19.4970 19.2279
cccc 0.5 00 Present 3.8819 3.8270 3.4247 3.8245 3.8766
10 Present 4.2267 4.1577 4.0323 4.1589 4.2104
5 Present 5.2592 51741 4.9934 5.1644 5.2064
2 Present 124618 12.2613 11.6975 12.1844 12.1503
1 Present 38.1228 37.5191 35.5885 37.1999 36.8942
2 00 Present 3.5242 3.2014 2.9860 3.1533 3.2524
10 Present 3.8936 3.5540 3.3005 3.4976 3.5894
5 Present 4.9846 4.6020 4.2407 4.5257 4.5983
2 Present 12.5920 11.9164 10.8003 11.6984 11.6310
1 Present 39.6963 37.9774 341725 37.2542 36.6881
np ng
i(q) :Z...Zu(q}l,...,qﬁ) X (lel ®...®L]‘i) (27)
j1=1 ja=1
k_ ok
where q = [¢". 4% ....q%] " is a vector of random inputs and L]lfk =I1", Z]":Zsk in which g is a col-
s#Ej ko

location point of the variable ¢*. Note that in this paper, ¢* is the standard normal variable and
g* is Gauss-Hermite quadrature point. For convenience, the number of quadrature points for
each variable is chosen equally such that:

n=n,=..=n5= ng (28)

The total number of Gauss point for the full tensor product is (ng)d. Note that in Eq. (27),
u(qjll, ...,q]‘i) is the “correct” response achieved from the “right” model by solving Eq. (23). When

the SC model is constructed, MCS can perform directly from Eq. (27) to facilitate the probabilis-
tic characteristics of the output, u. The cost for evaluating the approximate u using Eq. (27) is
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Table 8. The standard deviation (SD), mean, Skewness, Kurtosis for the biaxial thermal buckling of FG sandwich microplates
(MAT 1, a/h = 10) under uniform distribution of SC (256 samples) and MCS (10,000 samples).

BCs p Theory Mean SD Kurtosis Skewness COV (%) Time (s) Present
1-1-1
h/l=1
SSSS 0.5 SC 5.1240 0.4618 3.7233 0.5720 9.0 35 5.0822
MCS 5.1272 0.4625 3.7173 0.5728 9.0 345
2 SC 5.0582 0.4206 3.3517 0.4612 83 40 5.0241
MCS 5.0586 0.4199 3.3488 0.4622 83 337
cccc 0.5 SC 19.1480 1.7282 3.6560 0.5447 9.0 40 19.0172
MCS 19.1660 1.7298 3.6663 0.5463 9.0 333
2 SC 19.2059 1.5587 3.3783 0.4601 8.1 41 19.0571
MCS 19.1902 1.5537 3.3739 0.4625 8.1 338
h/l=5
SSSS 0.5 SC 0.9702 0.0896 3.9393 0.4313 9.2 34 0.9636
MCS 0.9711 0.0889 3.9440 0.4318 9.2 338
2 SC 0.8229 0.0758 3.5360 0.4483 9.1 35 0.8168
MCS 0.8239 0.0753 3.5357 0.4481 9.1 335
CCCC 0.5 SC 2.6516 0.2388 3.7487 0.6004 9.0 36 2.6319
MCS 2.6437 0.2373 3.7387 0.6016 9.0 341
2 SC 2.3275 0.2043 3.4008 0.4579 8.8 37 2.3146
MCS 2.3244 0.2038 3.4017 0.4598 8.8 339
2-1-2
h/l=1
SSSS 0.5 SC 5.1575 0.4437 3.6578 0.5488 8.6 33 5.1170
MCS 5.1630 0.4431 3.6507 0.5451 8.6 330
2 SC 5.1476 0.3989 3.3984 0.4576 7.7 35 5.1143
MCS 5.1497 0.3972 3.3867 0.4550 7.7 336
CCCC 0.5 SC 19.2746 1.7223 4.0047 0.4794 8.9 36 19.1633
MCS 19.3199 1.7202 40166 0.4751 89 337
2 SC 19.5098 1.5476 3.7307 0.3735 79 34 19.4079
MCS 19.4620 1.5415 3.7325 0.3733 7.9 339
h/l=5
SSSS 0.5 SC 0.9701 0.0848 3.6716 0.4538 8.7 33 0.9625
MCS 0.9694 0.0845 3.6585 0.4554 8.7 334
2 SC 0.8354 0.0738 3.3880 0.3847 8.8 33 0.8285
MCS 0.8359 0.0740 3.3960 0.3858 8.8 329
cccc 0.5 SC 2.6647 0.2316 3.6160 0.5683 8.7 37 2.6424
MCS 2.6566 0.2312 3.6124 0.5677 8.7 331
2 SC 2.3663 0.2010 3.4978 0.4153 8.5 35 23515
MCS 2.3593 0.2001 3.4965 0.4160 85 334

considerably lower than that for the original model in Eq. (23); hence, the total cost when using

the SC model may be thought of as simply the cost of (ng)d truth model runs. To assess the
accuracy of the proposed SC model, 10,000 samples of MCS drawn from the original computa-
tional model represented in Eq. (23) are also generated. To distinguish between MCS carried out
on the SC model (Eq. (27)) and MCS performed with the model in Eq. (23), the former is
referred to simply as the SC method. It is demonstrated in the following section that to achieve
sufficient accuracy, the computational cost of the SC model is much lower than that of MCS (i.e.,
ng = 10,000). It is also noted that for high-dimensional problems (i.e., the number of random

varijable, d is large), the SC method is also expensive compared to MCS, then alternative surrogate
models with or without dimension reduction techniques should be adopted. This paper only con-
siders four random variables for buckling analysis, six random variables for vibration analysis,
and because of its well-known theoretical development, straightforward implementation, the SC
approach is employed here.
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Table 9. The standard deviation (SD), mean, Skewness, Kurtosis for the biaxial thermal buckling of FG sandwich microplates
(MAT 1, a/h = 10) under linear distribution of SC (256 samples) and MCS (10,000 samples), T, = 25°C.

BCs p Theory Mean SD Kurtosis Skewness CoV (%) Time (s) Present
1-1-1
h/l=1
SSSS 0.5 SC 10.0239 0.8972 3.7410 0.5955 89 30 9.9421
McCS 10.0179 0.8962 3.7306 0.5927 8.9 325
2 SC 9.8862 0.8221 3.4865 0.5257 83 33 9.8221
McCS 9.9028 0.8225 3.4923 0.5270 8.3 330
cccc 0.5 SC 37.4986 3.3337 3.4160 0.5005 9.0 40 37.1999
McCS 37.4981 3.3363 3.4145 0.4994 9.0 342
2 e 37.4604 3.1073 3.4426 0.4919 83 41 37.2542
McCS 37.4520 3.1061 3.4461 0.4912 8.3 340
h/l=5
SSSS 0.5 SC 1.9025 0.1750 3.5750 0.5379 9.2 31 1.8857
MCS 1.8990 0.1741 3.5568 0.5388 9.2 331
2 SC 1.6121 0.1451 3.4563 0.4883 9.0 32 1.5977
MCS 1.6120 0.1459 3.4534 0.4870 9.0 343
CCcc 0.5 SC 5.2057 0.4802 3.7467 0.5627 9.2 35 5.1644
MCS 5.2083 0.4811 3.7479 0.5611 9.2 339
2 SC 4.5258 0.4083 3.5553 0.5651 9.0 33 4.5257
MCS 4.5315 0.4093 3.5512 0.5664 2.0 342
2-1-2
h/l=1
SSSS 0.5 SC 10.1009 0.8765 3.6702 0.5612 8.7 36 10.0190
MCS 10.1144 0.8751 3.6789 0.5680 87 336
2 SC 10.0814 0.7879 3.6023 0.4996 7.8 32 10.0084
MCS 10.0814 0.7875 3.6088 0.4978 7.8 340
Ccccc 0.5 SC 37.8308 3.2790 3.4421 0.4947 8.7 38 37.5191
MCS 37.7803 3.2773 3.4489 0.4940 87 345
2 SC 38.1656 2.9707 3.3935 0.4623 7.8 35 37.9774
MCS 38.0900 2.9685 33911 0.4637 7.8 339
h/l=5
SSSS 0.5 SC 1.9006 0.1756 3.6637 0.5696 9.2 32 1.8853
McCS 1.8996 0.1749 3.6758 0.5677 9.2 330
2 e 1.6355 0.1449 3.4050 0.4536 89 31 1.6221
McCS 1.6344 0.1459 3.4225 0.4503 8.9 342
cccc 0.5 SC 5.2082 0.4516 3.6203 0.5790 87 37 5.1741
McCS 5.2046 0.4527 3.6243 0.5781 8.7 336
2 SC 4.6453 0.3921 3.2125 0.3540 8.4 33 4.6020
McCS 4.6464 0.3925 3.2137 0.3433 8.4 335

5. Numerical examples

In this part, FG sandwich microplates with various BCs are utilized to analyze stochastic thermal

buckling and vibration, where the shear function ¥ (x;) = cot™! (x%) — igjﬁ [70] is chosen. They

are made from a ceramic and metal whose mean material properties are given by:

e MAT 1: ZrO, (E. = 244.27 GPa, o, = 12.766 x 10°°1/C, v. = 0.3), Ti— Al6 — 4V (E,, = 66.2
GPa, o, = 10.3 x 107¢ 1/C, v,, = 0.3).

e MAT 2: ALO; (E. = 380 GPa, p, = 3800 kg/m’, o, = 7.4 x 107°1/C, v, = 0.3), Al (E,, = 70
GPa, p,, = 2702 kg/m’, a,, = 23 x 10°°1/C, v,,, = 0.3).

The following normalized parameters are used:

1_ 2
M; (Eo = 1GPa, py = 1 kg/m”) (292)
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Table 10. Comparison of non-dimensional fundamental frequency @ of square SSSS FG sandwich microplates (MAT
2, a/h =10).

p h/l Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1
0.5 00 Present 14414 1.4814 1.5044 1.5182 1.5448 1.5728
MCT [74] 1.4462 1.4861 1.5084 1.5213 1.5492 1.5766

5 Present 1.5978 1.6412 1.6639 1.6793 1.7059 1.7345

MCT [74] 1.5987 1.6423 1.6643 1.6788 1.7064 1.7345

5/3 Present 2.5192 2.5876 2.6090 2.6353 2.6650 2.6996

MCT [74] 2.5006 2.5667 2.5900 2.6142 2.6437 2.6787

1 Present 3.7337 3.8305 3.8583 3.8965 3.9337 3.9800

MCT [74] 3.6872 3.7836 3.8126 3.8488 3.8885 3.9325

1 00 Present 1.2428 1.3002 1.3330 1.3536 1.3951 1.4398
MCT [74] 1.2449 1.3019 1.3352 1.3552 1.3975 1.4413

5 Present 13972 1.4622 1.4948 1.5189 15610 1.6054

MCT [74] 1.3963 1.4612 1.4941 1.4941 1.5590 1.6038

5/3 Present 2.2831 2.3940 2.4305 2.4687 2.5162 2.5745

MCT [74] 2.2638 23729 2.4092 2.4492 2.4950 2.5512

1 Present 3.4251 3.5941 3.6398 3.7004 3.7575 3.8367

MCT [74] 3.3769 3.5413 3.5882 3.6486 3.7072 3.7830

5 00 Present 0.9468 0.9822 1.0308 1.0442 1.1094 1.1739
MCT [74] 0.9473 0.9832 1.0320 1.0461 1.1105 1.1756
5 Present 1.0994 1.1394 1.1886 1.2156 1.2796 1.3500
MCT [74] 1.1083 1.1379 1.1882 1.2136 1.2785 1.3480
5/3 Present 1.7689 1.9910 2.0574 2.1321 2.2139 2.3144
MCT [74] 1.7540 1.9730 2.0398 2.1137 2.1944 2.2944

1 Present 2.6648 3.0474 3.1405 3.2691 3.3784 3.5261

MCT [74] 2.6261 2.9984 3.0933 3.2160 3.3274 3.4702
10 00 Present 0.9284 0.9430 0.9922 0.9960 1.0605 1.1229
MCT [74] 0.9296 0.9443 0.9935 0.9969 1.0625 1.1247

5 Present 1.0338 1.0924 1.1448 1.1626 1.2313 1.2991

MCT [74] 1.0326 1.0912 1.1434 1.1619 1.2294 1.2982

5/3 Present 1.6480 1.9024 1.9786 2.0600 2.1486 2.2601

MCT [74] 1.6350 1.8863 1.9614 2.0420 2.1309 2.2392
1 Present 24530 2.9105 3.0198 3.1652 3.2897 3.4536
MCT [74] 2.4205 2.8645 2.9739 3.1138 3.2394 3.3986

2
Net” o AT x 107, (29b)

N,=—~ .
“ 100M3E,’

The material properties (E;, E., p. p,, and o, o) are taken to be used at random using the
lognormal distributions with their coefficient of variation (COV) of 10% as a case-study. The pro-
posed method can work for any continuous probability distributions with different values of
COV. It should be mentioned that these distributions must be calibrated using experimental data
for real application. The assumptions of lognormal distributions are appropriate for non-negative
values. For comparison, 10,000 samples of the MCS are utilized.

Non-dimensional critical buckling temperatures of FG sandwich square microplates with p =
0.5, a/h =10 and h/l =5 are shown in Table 2 for the convergence investigation. The number
of series in the x;— and x,— directions is the same (N; = N, = N) for different BCs. It can be
seen that the results converge extremely rapidly, and since N = 8 is the requisite number of series
to achieve convergence and it is used in the following numerical examples.

5.1. Buckling analysis

The biaxial of non-dimensional deterministic critical buckling loads of SSSS Al/Al,O; microplates
(MAT 2) are shown in Table 3 for various values of a/h = 10, p and h/Il, and compared with
those published by Thai et al. [74]. An excellent agreement with earlier ones can be observed.
The deterministic critical buckling temperature of SSSS FG sandwich microplates with MAT 1
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Table 11. Non-dimensional natural frequency @ of square FG sandwich microplates under uniform distribution (MAT 2,
a/h = 10), AT = 600°C.

p h/l Theory 2-1-1 1-1-1 2-2-1 1-2-1 1-8-1
SSSS
0.5 o] Present 5.2828 5.5053 5.8330 6.1849 7.5599
10 Present 5.6804 5.9002 6.2190 6.5494 7.8887
5 Present 6.7502 6.9571 7.2390 7.5427 8.7866
1 Present 21.7290 21.9876 22.2244 22.5426 23.5853
1 o] Present 3.3546 3.7458 4.3526 4.9427 7.0961
10 Present 3.9058 4.2720 4.8168 5.3696 7.4425
5 Present 5.2381 5.5431 6.0010 6.4990 8.3592
1 Present 20.3576 20.7811 21.1600 21.6622 23.2434
2 o] Present 1.0349 1.3045 2.6476 3.6014 6.6425
10 Present 1.6559 2.3509 33179 4.1329 6.9974
5 Present 3.6867 4.1199 4.7776 5.4491 7.9550
1 Present 18.9069 19.5118 20.0411 20.7504 229113
cscs
0.5 o] Present 9.2418 9.4377 9.7615 10.0928 11.5272
10 Present 9.8156 10.0126 10.3226 10.6504 12.0520
5 Present 11.3549 11.5560 11.8480 12.1655 13.4940
1 Present 34.1543 34.5217 34.8508 35.2996 36.7173
1 00 Present 7.4475 7.7481 8.2590 8.7898 10.9900
10 Present 8.0847 8.3837 8.8720 9.3889 11.5307
5 Present 9.7417 10.0445 10.4945 10.9918 13.0024
1 Present 321924 327971 333236 34.0426 36.2349
2 00 Present 5.6557 6.0253 6.7434 7.4690 10.4629
10 Present 6.3822 6.7506 7.4232 8.1226 11.0151
5 Present 8.1803 8.5594 9.1656 9.8283 12.5190
1 Present 30.0657 30.9575 31.7100 32.7355 35.7494
cccc
0.5 ] Present 13.4057 13.6605 13.9256 14.3084 15.9403
10 Present 14.2449 14.4422 14.7806 15.1027 16.6347
5 Present 16.4696 16.7153 17.0222 17.4042 18.8916
1 Present 49.4877 49.9962 50.4376 51.0499 52.9363
1 ] Present 11.4477 11.7521 12.3305 12.8608 15.2125
10 Present 12.3330 12.6339 13.1914 13.6853 16.0937
5 Present 14.6262 14.9790 15.4730 16.0375 18.2948
1 Present 46.7919 47.6390 48.3560 49.3432 52.2943
2 o] Present 9.5184 9.8784 10.5923 11.3128 14.7131
10 Present 10.4395 10.8537 11.5183 12.2454 15.4720
5 Present 12.7946 13.2360 13.8757 14.6515 17.7552
1 Present 43.8247 45.0873 46.1175 47.5447 51.6388

under biaxial compression is also estimated in order to further validate the proposed technique
with uniform and linear distribution. The outcomes are compared with those obtained by
Zenkour et al. [30] and Daikh et al. [32]. As seen in Tables 4 and 5, the present solutions match
well with those from earlier ones. Tables 6 and 7 provide some new results of the thermal buck-
ling of CSCS and CCCC FG sandwich microplates.

Stochastic thermal buckling analysis takes into account four random variables E,, E., o,
that are presumptively distributed lognormally with MAT 1 mean values. For the SC model with
the Gauss quadrature point Ng, = 4, only 256 samples are needed. Tables 8 and 9 list the results
of the FG sandwich microplates with #/I =1 and h/l =5 for two types of BCs, a/h and p. The
statistical moments derived from SC and MCS exhibit strong concordance. It is noted that this
case’s computing time is around 1/10 of the time required by the direct MCS technique. Again,
for both SC and MCS, the mean values of the critical buckling temperature are quite similar to
the corresponding deterministic responses.



JOURNAL OF THERMAL STRESSES . 17

Table 12. The standard deviation (SD), mean, Skewness, Kurtosis for the natural frequencies @r of FG sandwich microplates
(1-2-1) under uniform distribution of SC (4096 samples) and MCS (10,000 samples) (MAT 2, a/h = 10), AT = 600°C.

BCs p Theory Mean SD Kurtosis Skewness COV (%) Time (s) Present
h/l=1
SSSS 0.5 SC 22.6602 2.0772 3.1872 0.2472 9.2 101 22.5426
MCS 22.6515 2.0821 3.2086 0.2464 9.2 1425
1 SC 21.7469 1.9354 3.1576 0.2720 8.9 99 21.6622
MCS 21.7353 1.9309 3.1168 0.2674 8.9 1421
2 SC 20.8142 1.7360 3.0883 0.2400 83 102 20.7504
MCS 20.8017 1.7312 3.0987 0.2384 83 1427
CSCS 0.5 SC 35.4451 3.3220 3.1932 0.2635 9.4 100 35.2996
MCS 35.4430 3.3328 3.1935 0.2667 9.4 1419
1 SC 34.1428 2.9795 3.0064 0.1946 8.7 104 34.0426
MCS 34.1526 2.9763 3.0023 0.1958 8.7 1425
2 SC 32.8265 2.7542 3.1626 0.2596 8.4 102 32.7355
MCS 32.8231 2.7507 3.1633 0.2583 84 1426
CCCcC 0.5 SC 51.2987 4.7779 3.0567 0.2155 9.3 103 51.0499
MCS 51.2902 4.7786 3.0478 0.2161 9.3 1423
1 SC 49.5010 4.4544 3.1195 0.2677 9.0 101 49.3432
MCS 49.5012 4.4578 3.1212 0.2664 9.0 1424
2 SC 47.7206 3.9214 3.1770 0.2183 8.2 99 47.5447
MCS 47.7163 3.9259 3.1798 0.2177 8.2 1427
h/l=5
SSSS 0.5 SC 7.5787 0.7032 3.1579 0.2657 9.3 103 7.5427
MCS 7.5762 0.7048 3.1580 0.2655 9.3 1423
1 SC 6.5071 0.5581 2.9883 0.2181 8.6 104 6.4990
MCS 6.5097 0.5595 2.9870 0.2196 8.6 1422
2 SC 5.4565 0.4318 3.1400 0.2212 79 105 5.4491
MCS 5.4497 0.4329 3.1363 0.2222 7.9 1429
Cscs 0.5 SC 12.2202 1.1289 3.2599 0.3121 9.2 105 12.1655
MCS 12.2159 1.1254 3.2554 0.3160 9.2 1425
1 SC 11.0292 0.9435 3.2227 0.2880 8.6 104 10.9918
MCS 11.0278 0.9453 3.2207 0.2892 8.6 1427
2 SC 9.8561 0.7592 3.1190 0.1959 7.7 102 9.8283
MCS 9.8528 0.7555 3.1193 0.1952 7.7 1426
cccc 0.5 SC 17.4699 1.6109 3.1958 0.2921 9.2 102 17.4042
MCS 17.4736 1.6157 3.1948 0.2928 9.2 1428
1 SC 16.0781 1.3699 3.0924 0.2469 85 101 16.0375
MCS 16.0823 1.3742 3.0888 0.2477 85 1425
2 SC 14.6956 1.1520 3.1677 0.2234 7.8 104 14.6515
MCS 14.7067 1.1541 3.1697 0.2241 7.8 1422

5.2. Vibration analysis

Non-dimensional deterministic fundamental frequencies of SSSS Al/Al,O; sandwich microplates
(MAT 2) are shown in Table 10 to demonstrate the correctness of the current theory for vibra-
tion analysis. It is noted that the results are computed without temperature effects and validated
with those from Thai et al. [74]. Table 11 presents some new results of FG sandwich microplates
under uniform temperature distribution for three boundary conditions (SSSS, CSCS, CCCCQC).

Six random variables (E,;, E;, p,,» Po» %> Om) used in stochastic vibration analysis are assumed
to follow lognormal distributions and their mean values are taken from MAT 2. It should be
noticed that just 4096 samples are required for the SC model, whereas 10,000 samples are
required to estimate the cost of the MCS. Table 12 compares the standard deviation (SD), mean,
kurtosis and skewness, which are the first four statistical moments of the natural frequencies as
calculated by the SC and MCS models for a range of p and a/h values. It is clear that there is
consistently strong agreement between all statistical moments derived from two models.
Comparing the current technique to the direct MCS method, the computing time is around 1/14.
For all boundary conditions and various values of power index p, the mean fundamental fre-
quency values for SC and MCS are nearly identical to the deterministic values.
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Figure 2. Quantile-quantile, PDF and PoE of MCS and SC for the critical buckling temperature of the (1-1-1) FG sandwich micro-
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5.3. Results of reliability estimation

Figures 2—-4 compare the linear quantile-quantile, probability of exceeding (PoE), and probability
density function (PDF) of SC and MCS for the fundamental frequency and thermal buckling of
the FG sandwich microplates with various BCs. It is clear that the SC method offers a feasible
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Figure 3. Quantile-quantile, PDF and PoE of MCS and SC for the critical buckling temperature of the (2-1-2) FG sandwich micro-
plates under linear distribution with SSSS, CCCC BCs (MAT 1, p=2, o/h =10).

alternative approach for simulating the uncertainties of various material characteristics. A
decrease in frequency and critical buckling temperature is observed with an increase in the mater-
ial length scale parameter with h/l = oo being the minimal value (Figure 5). Additionally, this
graph interestingly shows that a decrease of h/l leads to the uncertainty expansion of the fre-
quency and critical buckling temperature. It is interesting to see in Figure 6 that when p
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form distribution with SSSS, CCCC BCs (MAT 2, p=1, a/h=10).

decreases, the frequency and thermal buckling uncertainty appears to expand. It is similar when
comparing the COV of these stochastic responses in Figure 7. It is worth noting that even when
maintaining a constant COV of the input random variables, the fundamental frequency’s COV
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drops as p increases. As p rises, the COV of stochastic thermal buckling temperatures falls.
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Figure 5. Probability density function (PDF) for the critical buckling temperature and free vibration of (1-2-1) FG sandwich micro-
plates under uniform distribution with various ratio thickness to material h/l, (o/h =10, p=0.5).

6. Conclusions

A higher-order shear deformation microplate model for stochastic thermal buckling and vibration
analysis of functionally graded sandwich microplates is investigated in this study. The governing
equations are developed using Hamilton’s principle and solved by Ritz’s approach using a hybrid
shape function. The stochastic collocation method is utilized and the obtained results are com-
pared with those from Monte Carlo Simulation. The effects of material distribution, ratio of side-
to-thickness, and boundary conditions on the natural frequencies and thermal buckling of FG
sandwich microplates are investigated. The following important points can be derived from the
numerical results obtained:

e The accuracy and efficiency of predicting stochastic thermal buckling and fundamental fre-
quencies of FG sandwich microplates have been demonstrated.

e In contrast to the Monte Carlo Simulation, which requires 10,000 samples, the stochastic col-
location approach requires just 256 samples to calculate stochastic thermal buckling, the fun-
damental frequencies are 4096 samples, respectively.

e It is also interesting to note that when the power-law index p and ratio of thickness-to-MLSP
h/1 decrease, the frequency and thermal buckling uncertainty appears to expand.
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ABSTRACT

The authors propose an intelligent computational method using the deep
feedforward neural network integrated with an improved balance compos-
ite motion optimization algorithm to formulate a so-called iBCMO-DNN for
solving the stochastic thermal buckling problems of functionally graded
porous microplates. In the present approach, the deterministic behaviors
of the functionally graded porous microplates were firstly analyzed by the
combination of a unified higher-order shear deformation theory, modified
strain gradient theory, and Ritz-type series solutions, and then stochastic
responses under uncertainty of material properties are obtained by the
iBCMO-DNN algorithm. The deep neural network with the long short-term
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memory model is used as a surrogate method to replace the time-consum-
ing computational model, while the improved balance composite motion
optimization is used to search for the optimal solutions. The obtained
numerical results for various boundary conditions, uncertainty parameters,
and three types of temperature distribution indicated that the proposed
method achieves its accuracy and effectiveness in predicting stochastic
thermal buckling of the functionally graded porous microplates. The
improved balance composite motion optimization algorithm demonstrates
a computational time ~1.7 times faster than its predecessor. Furthermore,
integrating a deep neural network into the improved algorithm reduces
computational time to about 2/5 compared to the method without it.

1. Introduction

The functionally graded materials (FGMs) have been increasingly studied for applications in dif-
ferent engineering fields, such as nano-electromechanical systems (NEMS) [1], micro-electro-
mechanical systems (MEMs) [2,3], and atomic force microscopes (AFMs) [4] since its smooth
variation of material properties could meet severe thermo-mechanical conditions in comparison
with conventional multilayered materials. However, in practice, the FGMs may contain internal
defects, such as pores, uncertainty in material properties, and size effects at small-scale structures,
which result in its behavior variations and therefore require efficient computational methods.
These interesting topics have attracted numerous researchers with different approaches.

For analysis of functionally graded porous (FGP) plates at macro scale in thermo-mechanical
environments, many investigations on behaviors of FGP plates have been performed with various
approaches [5-7] in which it could be noted that the effects of porosities impacted importantly
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on responses of the FGP plates. Nevertheless, when considering such structures at a small scale,
the standard elasticity theory would be not able to forecast accurately, hence the nano and micro
theories were developed to capture the size effects. Based on this approach, several researches
have been carried out to examine thermo-mechanical behaviors of FGM nanostructures [8-10]
using nonlocal strain gradient theory [11,12], FGM microplates [13-16], and FGP microplates
[17]. Tt is worth noticing that to examine the size effects of isotropic microplates, the modified
coupled stress theory (MCT) [18] including one material length scale parameter (MLSP) and add-
itional strain gradient in constitutive equations has been commonly employed by its simplicity.
Alternatively, by introducing the dilatation and deviatoric stretch gradients in constitutive equa-
tions, the modified strain gradient theory (MST) [19,20] derived from the five-MLSP strain gradi-
ent theory [21,22] appeared to be more accurate than the MCT. Furthermore, in practice, the
material properties of FGP microplates could be uncertain due to manufacture processing or
other unexpected phenomena, it led to changes of behaviors of the FGP microplates and therefore
required advanced computational methods to quantify the solution field. Practically, to predict
stochastic responses of structures, Monte Carlo Simulation (MCS) method is the simplest one to
solve this complicated problem. Nonetheless, this approach is infeasible in different cases due to
its expensive computational cost, especially when a complicated physical model is considered.
Another approach is to use polynomial chaos expansion (PCE) which speeds up the computing
process while still maintains the accuracy. Several earlier studies have been conducted for stochas-
tic analysis of FGM and FGP plates [23,24], and FG/FGP microplates [25,26].

In addition, there has been a significant interest in the optimal design of FGM plates, as evi-
denced by numerous studies [27-29]. Optimization algorithms can be classified into two primary
categories: gradient-based methods, such as sequential quadratic programming, optimality criter-
ion, force method, and non-gradient-based methods. The algorithms in the first group [30-32]
quickly find the best solutions. However, a common limitation of these algorithms is their ten-
dency to become stuck at local optimal solutions. Furthermore, it is imperative to conduct the
sensitivity analysis of both the fitness and constraint functions, as they play a crucial role in the
optimization process. However, it is worth noting that those analyses can be intricate and
resource-intensive. To mitigate these limitations, a variety of alternative algorithms have been
devised, such as the Firefly Algorithms (FA) [33], Memetic Algorithm (MA) [34], Ant Colony
Optimization (ACO) [35], Particle Swarm Optimization (PSO) [36], and modified symbiotic
organism search (mSOS) [37], Balancing composite motion optimization method (BCMO) [38],
etc. The candidates within this particular group are generated in a random manner within the
search domain without any reliance on gradient information. As a result, these algorithms have
the potential to achieve a solution that is globally optimal. However, a notable drawback is the
high computational cost associated with them, particularly when dealing with optimization prob-
lems that involve a large number of design variables. Moreover, it should be noted that the
machine learning and balancing composite motion optimization method (BCMO) have been
developed for different optimization problems of structure behaviors, which could be considered
in enhancing computational costs. The BCMO [38] is an optimization approach based on the fact
that the search motions of potential solutions are compositely balanced in both local and global.
A candidate solution can advance both to further explore the search space and to approach better
ones in the local areas. Thereby, the best individual generated in each generation after ranking
could jump from one space to another right away or strengthen its existing local space. In prac-
tice, the BCMO could be integrated with the artificial neural network (ANN) to optimize behav-
iors of the composite structures and reduce computational costs. Thanh Duong et al. [39]
presented the BCMO-ANN algorithm for the optimization design of rectangular concrete-filled
steel tube short columns. Khatir et al. [40] used the BCMO-ANN for damage assessment of FGM
plates. Tran et al. [41] recently investigated stochastic vibration and buckling optimization of
FGP microplates using the BCMO-ANN and MCT. A literature review shows that the effects of
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porosity, uncertainty in material properties, and size effects of FGP microplates have been a chal-
lenging topic that needs to be studied further. Particularly, when confronted with the uncertain
and naturally variable mechanical properties of the materials, these factors present major difficul-
ties that necessitate more deep study. So, in the present work, we focus on improving the BCMO
algorithm and combining it with deep learning (DNN) to resolve this problem. The main contri-
bution of this paper is a novel intelligent computation algorithm iBCMO-DNN for solving the
stochastic thermal buckling problems of FGP microplates using the MST, unified higher-order
shear deformation theory (HSDT), and Ritz method.

With the aim of reducing the computational time in dealing with stochastic problems, this
study proposes a novel intelligent computational algorithm, namely iBCMO-DNN, for handling
stochastic thermal buckling analysis of FGP microplates. The theory is developed via the
improved BCMO, DNN, MST, and unified higher-order shear deformation theory (HSDT). The
deterministic responses of FGP microplates are derived from the Ritz-based solver, a general
HSDT, and MST. The approximation functions of the Ritz approach are shown as a hybrid with
a sequence of exponential functions mixed with a polynomial to meet the boundary conditions.
The solution field is then generated randomly and optimally selected by a modified BCMO, and
the subsequent results are trained via the DNN. Numerical results are displayed for various con-
figurations of boundary conditions, uncertainty parameters, and three types of temperature distri-
bution on the critical buckling temperature of FGP microplates.

2. Theoretical formulation

Considering a rectangle FGP microplate in the coordinate system (x,x,,x3) with thickness h,
sides a x b as provided in Figure 1.

2.1. Material properties and temperature distribution

The effective material properties of FGP microplates are given by [42]:

p
pps) = (o= 2 (Z578) =B e 0
where P, and P,, are the Poisson’s ratio v, Young’s moduli E of ceramic and metal materials,
respectively; p is the power-law index; 0 < f <1 is the porosity volume fraction; x3 €
[-h/2,h/2]. Moreover, to investigate the effect of temperature on the buckling responses, three
types of temperature distribution are considered below [43,44]:

e For uniform temperature distribution (UTR): T(z) = T, + AT where the bottom surface’s ref-
erence temperature is T,.
Txa

Ceramic X
_b -

X1/ )
Metal
a

I 1
I 1

Figure 1. Geometry of FGP microplates.



4 V.-T. TRAN ET AL.

e For linear temperature distribution (LTR): T(z) = (T; — Ty) (£ + 1) + T}, where the temperatures
at the top and bottom surfaces of FGP microplates are represented by T; and T}, respectively.

e For the nonlinear temperature rise (NLTR): the expression of the current temperature is
derived from the Fourier equation of steady-state heat conduction as follows: T(z) =

T(b) + J”‘/ZT;_/Z y 2 /2 k(g’l) o= where k(z) is the coefficient of thermal conductivity. It is noted
z)az -
—h/2

that, in the present work, the material properties are supposed to be temperature-independent,
and the effects of temperature dependency on the thermal buckling of FGM microplates could
be referred to Refs. [45,46] for more details.

2.2. FGP microplates’ unified kinematics

A general HSDT kinematic of FGP microplates is generated from Refs. [25,44] as follows:

Uy (X1, %2, X3) = (Dz(x3)(p1(x1,x2) + (Dl(x3)u(3),1 + u(l)(xl,xz) (2a)

s (x1,%2,%3) = Do (x3) P, (%1, %2) + (I)l(x3)ug,2 + ug(xl,xz) (2b)

Uz (X1, X2, %3) = U3 (X1, %2) (2¢)

with @,(x3) = HW(x3), @1 (x3) = H¥(x3) — x3, P (x3) = [° ﬂf’Tz)dxy uj (j=1,2,3) are dis-
placements in x; —, x —, and x3— directions, respectively; u},uJ and u$ are membrane and

transverse displacements at neutral plane; ¢,, ¢, are rotations at neutral plane with respect to the
x;— and x,— axis, respectively; H® is the transverse shear stiffness; f(x3) is a higher-order term
which satisfies the boundary condition f3(x; = =) = 0.
The FGP microplates’ total potential energy is calculated by using Hamilton’s principle as fol-
lows [47]:
2

J (6Iyp + oIlyp)dt = 0 (3)

ty

where 6Ilyg, 6I1yp are the variations of work done by membrane compressive forces, and strain
energy, respectively.

The strain energy variation of the system o6Ilyp is obtained by the modified strain gradient
theory (MST) [19,48,49]:

ollyg = J (60g + po& + tom + mdy)dA (4)
A

where €, %, &, are strains, symmetric rotation gradients, dilatation gradient, and deviation stretch
gradient, respectively; ¢ is Cauchy stress; m, p, T are high-order stresses corresponding with strain
gradients y,& m, respectively. The components of strain ¢; and strain gradients &, x; are
defined as follows:

e = (Uij+ 15,i)/2; & = emm,is Li = (U, mj€imn + Un, mi€imn) /4 (5a)
Wik = (&jk,i T &kij + &jk)/3 — [(fi + 2mi,m)Ojk + (S + 28mk, m)dij + (fj + 28mj,m)5ki] /15 (5b)

where 6;; is Kronecker delta; e;,,, is permutation symbol. The constitutive equations are used to
determine the stress components as follows:

aij = Aekdij + 2pueys my = 2uk s p; = 205855 T = 20 (6)
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where A, u are Lamé constants; Iy, l,l; are three material length scale parameters (MLSP) that
should be practically determined by experimental works. Substituting Eq. (2) into Eq. (5a), the
strains £ = [() (%) ] are achieved as follows:

S(SS) = (I)3 (X3)8(3>; 8<i) = (Dz(xg)s(z) + (1)1 (X3)8(1) + 8(0) (7)

where ®;(x3) = H*f3(x3)/u(x3). The non-zero components of dilatation gradients & =
(& & @]Taregivenby:

§=8" + 08 + 0,87 + 1380 + 58" (8)
The expressions of deviatoric stretch gradient and strain gradient components are as follows:
1=+ 0" + 0 + o3 + 0@ + @y 50 + 3 50 (92)
2 =2+ W05 + 105 + 77153 + VD 35 + 7D, (9b)
where

TIT:['7111 Moz M333 3M3z1 M3z 3N 3Min 33 33 6”/123]>
XT:[XU Y2 201 A3 23 2%23]

The strain components of the FGP microplates are described in Appendix A. The stress-strain
relationship of FGP microplates is represented as follows:

) o11 o Qu Qn
o) = 0 = QgZ)SO) = Q12 Q2 (10a)
012 0 st
6 — 013 — Qg = Qss 13 (10b)
023 ¢ 0 Q44 V23
mi 1 000 0O 1
My, 01 00 0 O A2
) omp /0 01 0 0 O 112
m= mas (= = o, Iexey, = 20 00010 0 . (10¢)
My3 0 000 10 123
mi3 0 000 01 113
1 00 &
p= =oelypaE=2u510 1 0[] & (10d)
0 0 1 &3
T111 [1 0 0 0 0 0 0 0 0 0]/[#ny
1222 601 00 0 0O0OOOUO Na22
T112 0 01 00 O0OTUOTU OO N2
Tyl 0001 00 0O0TO0OTO N1
T331 2 0 0 0 01 0 0 O0O0O N331
TS g (0o =250 00 0 0 1 0 0 0 0| 7 (10¢)
T333 00000 0O 1O0O0O0 N333
T113 0000 0O O0OT1O0FUO N113
T223 00000 O0OOTOT1FWO N3
T123 (00 0 0000 0 0 1]y
h =2 l c =2 lZ =2 12 E(x3) VE(x3)
where = ol Py )Oﬁg =2uly, oy =2ul,  Qu=Qss = Qg = =301’ Qu =77

E(x: X3
Qxn = 1<_;2)> Qu =12
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The variation of the strain energy of FGP microplates is hence derived from Eq. (4) as follows:

oMyg = [, ( 658 —|— péé + ton + moy)dA

— f +P2)5£ o +pgo>5s<o>
P, 5§ Yo + PP o + pUog! 4 P sE
+P(5 oy f( 5)( 5 oy + P(2 oy (/1)5;( M+ P 5y ©)
+PY o) + PPon® + PiHon® +P Jon® + PPy + Pl oy
where the stress resultants are given by:

h/2 h/2
(P§°>,P£1>,P§2>) = J (1,0, ®,)6Vdxs; PO = J ®,6') dx;

~h/2 —h/2

h/2

(p, 20, P, PO, P = J (L, ®y, s, Dy 3, Dz 3)pxs

—h/2
h/2

(PP, P2, PO, P, PE)) — J (1,13, @y 5, By, 33, Dy 33, D) mdls
—h/2
h/2

(P,(/IO)) P,(11>) P;(llz)) P,<13)) P,(14>) PEIS)) P,<16)) - J (13(1)1)@2’(1)3) q)l,?)) ®2,3) (D3,3)'|dx3

~h/2

The following stress resultants could be derived in terms of gradients and strains:

p A° B° B 0 £

PV | _ [B° D° D! 0 |l

P2 ( |B: D! H! 0 g?

PP 0 0 0 Af]|[e®

©) .. A

P 4 ¢ ¢ ¢ ¢

¢ A* B* B; B" B; £©

P [ 1B pf i 0f B || Ew

PP 0 IB: Df HS OB T [QE®

< s s s 75 -

p¥ | [B° O0° F D° D %Ez;

e | B pf ¢ b w3
P [ A a1 B4 Rl 1
| [aomomE (e
B’ D' D! E' E F ||y
P B/ D! H/ G/ 1I" J @)
% — | s s s s T x
P (~ |B" E* G' D' D, K/|]zx?
Pg;) ]—354 I:EX 1/ 1:)5 I__{Q L x@
p®) B2 B/ 7 K/ L mt|(x”
VA L N N N S_

(11)

(12a)

(12b)

(12¢)

(12d)

(13a)

(13b)

(13¢)
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(0) - -
Pn Al B B Al E’I E’? A” n(O)
P s s > O s
" B’ D" D! D] O" P! Q| |qW
PV B Dy m DL E T OEL||®
PP 4 = Al D pﬂzs I_{nf’s F_?% I_Zg] 15’; n® (13d)
PY| B O BT B DL DL DL e
o) B, P/ J' J, DJ H{ Dy ||n®
R et M Sl

PZIG) _A? (257 FZS R’ D?s DZS H’Zs 1 n<6)

n

where the FGP microplate stiffness components are described in Appendix B. The variation of work
done by membrane compressive loads in thermo-mechanical environments is determined by:

STy = — J N (8008, + 00, ) d J (V™12 008, + N2 000, )dA (14)

A A

where N ) and N are in-plane edge loads, Ngq) = 0; NE") = Ném = N(”),Ng) =0 are the
pre- buckhng in- plane thermal loads given by:
h/2
N(") = J (Q]] + le)O(ATdZ (15)
~h/2

in which « is the coefficient of thermal expansion; AT = T(z) —
deviation from the reference one 7°.

T, is the current temperature’s

2.3. Ritz-type series solution

According to the Ritz approach, the following series of approximation functions and associated
series values can be wused to describe the membrane and transverse
(1,19, u3, @1, ,) of the FGP microplates:

displacements

ny ny ni )
X1,X2 E g u1iR; 1 (x1)Pj(x2); Xl,xz E E U2iiR; (1) Pj,2(%2) (16a)
i=1 j= i=1 j=
i n_ m
9(x1,%2) E E usiiRi(x1)Pj(x2);  @a(x1,%2) E E YiiRi(x1)Pj 2 (x2) (16b)
i=1 j= i=1 j=
n Ny
@, (x1,%2) E E XiR;, 1 (21) Pj(x2) (16¢)

i=1 j=1

where uyjj, uzij, Usij, Xij, y;j represent unknown variables which need to determined; the shape func-
tions in x;— and x,— direction are R;(x;), Pj(x2), respectively. As a consequence, only two shape
functions affect the five unknowns of the microplates. It should be noted that the decision of the
shape functions affects the accuracy, convergence rates, and numerical instabilities of the Ritz
solution, which was discussed in detail in Refs. [50,51]. The functions R;(x;) and Pj(x,) are gen-
erated to satisfy the boundary conditions (BCs) at the microplate edges as follows:

e Clamped (C): o, = ¢, =ty =u)=ud=0atx, =0,band x; = 0,a
e Simply supported (S): ¢, =u) =u) =0atx; =0,aand ¢, =) =u) =0 atx, =0,b.

Noting that the use of modified strain gradient theory to capture the size effects could lead to
an increase in the order of differential characteristic equations and additional higher-order
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boundary conditions [48,49,52]. However, for the simplicity purpose, the effect of non-classical
boundary conditions is not considered in this paper.

The combination of clamped and simply-supported BCs on the edges of the microplates leads
to the various ones as follows: SSSS, SCSC, CCCC which will be taken into account in the
numerical examples as follows:

e For SSSS BC: Ri(x;) = xi(a — x;)e™ 7, Pj(x2) = x2(b — x)er
e For CCCC BC: Ri(x1) = x}(a —x1)%e™+, Pi(x;) = x3(b—x,)°e”
e For SCSC BC: R(x;) = x,(a — x;) e, Pi(x2) = x,(b — x) e T

Additionally, to construct characteristic equations of motion for the FGP microplates, substi-

tuting the approximations in Eq. (16) into Eq. (3) by accounting for Eqs. (11) and (14) leads to:

Kd=0 (17)

where d = [ul u u; X y]T is the displacement vector to be determined; K = K® + K* +
K- + K" is the stiffness matrix which is composed of those of the strains K° symmetric rotation
gradients K7, dilatation gradient K°, and deviation stretch gradient K”. These components are
given in more detail as follows:

KKll KK12 ch13 KK14 KK15

TKK12 K<22 K<23 Kr24 KK25

K¢ = TI<K13 TKK23 KK33 KK34 I(’C?’5 with ¥k = {8’ 5) x> 17} (18)
TKK14 TKK24 TKIC34 KK44 KK45
TKKIS TKKZS TKK?:S TKK45 KK55

where the components of the stiffness matrix K° and K* can be referenced to the earlier work
[25]. The stiffness matrix’s components K¢ and K" are given in Appendix C.

2.4. iBCMO-DNN algorithm

It is known that the material properties may be uncertain due to the manufacturing process or
other major circumstances. Because of this uncertainty, structures’ static and dynamic behaviors
are fluctuated, it hence required the advanced computational methods to predict its stochastic
behaviors. As mentioned in the introduction, many approaches could be used with different
degrees of success, the present section proposes an intelligent computational iBCMO-DNN algo-
rithm which enables to capture uncertain responses of the FGP microplates.

2.4.1. An improved balancing composite motion optimization (iBCMO)
The balancing composite motion optimization (BCMO) is a meta-heuristic algorithm technique
which was initially developed by Le-Duc et al. [38] in which the key idea of this approach is to
balance the individual composite motion features within the global optimum. Balancing global
and local search via a probabilistic decision model creates a mechanism of mobility for each
individual.

Initialization: As follows, a random initialization is used to create the population distribution,

X = xJL + rand(1,d) x (xlU - x.L) (19)

7

where x! is the lower bound and x! is the upper bound of the i"— individual; the number of

items is d.
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Best individual and instant global point: The instant global point x},. is determined as the
prior best of x{™! with regard to a trial 4}, where u} is calculated using population information
from the current generation as follows:

uy = (LB + UB)/2 4 Vi jip + Viapn (20)

where v}, , is the relative motions of the individual k" with respect to the individual k%; v}, n
is the relative motions of the individual k" with respect to the previous best one. v}, /2 and v}, /N

Qutput data

Output layer

Hidden layers

Figure 2. Deep neural network.

Start

v

‘ Defining the Ritz solution's material attributes and boundary conditions ' / N
¢ Ritz solution
verification

‘ Compute the critical buckling temperature response of FGP microplates ‘ \

v

‘ Verify the Ritz solution ‘
Define design variables by the Ritz-iBCMO '

v

Create training data samples for the DNN model and determine the

design space.
‘ l

, ] The DNN model's training —
¢ Stochastic
calculation
' via a COV

Model
enhance | Implement stochastic computation

{

‘ Validate stochastic response obtained by Ritz-iBCMO and iBCMO-DNN ‘

No A Yes p -
» Stop

Accurate ?

Figure 3. The flowchart of the stochastic response of FGP microplates.
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are determined as follows:

_ . Jrand(1,d) if TV;>{
Vifj = (%~ X { —rand(1,d)  otherwise =

where ( is the probability threshold in selecting the mutation and crossover phases. The value of
{ = 0.5 has been chosen for the balance of global and local search phases as well as mutation and
crossover mechanisms for solving general optimization problems [38]. Instant global point is
defined as follows:

Oin 71 otherwise

oo {uﬁ if f(u}) <f(x") (22)

Individuals’ composite mobility in the solution space: In BCMO, v; represents the global
search motion, which is governed by:

Vi = Lgs X de X (xo,'n - Xj) (23)
where
1j,2
e if TV;>{( . [rand(1,d) if TV; >
Lgs = e‘ﬁ(l‘ﬁ)'ﬁ otherwise '’ dv’] B —rand(l,d) otherwise (24)

where NP is the population size. These vy instances have equal probability and can be calculated
as follows:

P(vi) = P(vy;) x P(vj) = with k=1,..,4 (25)
The i individual’s position is updated as follows:
Xt =xl 4 vy + v (26)

It is noted that in the original BCMO, the function rand is a random number which is uni-
formly distributed in the range [0,1], the present iBCMO tries to enhance convergence speed

] ——CCCC

o 09' —+—SCSC 4
S —e—S8SS
g ; —
o) 0.8 7
o
S
Lo7 _
o
£
S 0.6 1
3
o
T 059 — * = = = = = e
2
Co4f 1

0.3 I @ © 4 < © © © © ©

N
N
w
i

5 6 7 8 9 10 11 12
Number of series

Figure 4. Convergence study of series solution of Al/Al,0; FGP microplates with different boundary conditions (a/h = 20,
p=25 p=0.1, h/l=5).
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while guarantees the solution accuracy by defining a subset [a;,b;] € [0, 1] which gives the most
optimal values. Moreover, it is worthy to noticing that the probabilistic threshold { for choosing
its mutation and crossover phases might be changed with different problems, therefore which will
be selected throughout numerical simulations.

2.4.2. iBCMO-DNN algorithm

A deep feedforward neural network is shown in Figure 2 in which the input data of the neural
network is passed through the input layer, hidden layers, and output layer. Before reaching the
nodes, the input data from the outside is multiplied by the weights. Each node in the succeeding
layers will get the total of the preceding nodes’ output values multiplied by their respective

Table 1. Normalized critical buckling load N, = (NTa? /h*E,,) of Al/A1,03 FGP square microplates (8 =0, a/h = 10, SSSS).

h/l
p Theory 00 10 5 2 1
Axial compression (N§m>,N§’">,N§’2"> =1,0,0)
0.5 Present 12.1593 14.1562 20.1595 62.2324 212.5038
MST [60] 12.1236 14.1490 20.1999 62.1669 211.1461
RPT [62] 121213 14.1543 20.2387 62.6144 213.5682
IGA [61] 12.1230 14.0850 19.9551 60.8187 206.3342
1 Present 9.3724 11.0035 15.9002 50.1979 172.6696
MST [60] 9.3391 10.9906 15.9260 50.1870 171.9637
RPT [62] 9.3391 10.9968 15.9590 50.5419 173.7865
IGA [61] 9.3391 10.9375 15.7204 49.0315 167.6943
2 Present 7.2889 8.5648 12.3864 39.0974 134.4300
MST [60] 7.2631 8.5419 12.3708 39.0731 134.2383
RPT [62] 7.2631 8.5479 12.4000 39.3331 135.4673
IGA [61] 7.2631 8.4979 12.1985 38.0563 130.3251
5 Present 6.0563 7.0017 9.7751 28.8861 96.9485
MST [60] 6.0353 6.9468 9.6789 28.7840 96.9802
RPT [62] 6.0353 6.9549 9.7100 28.9617 97.6728
IGA [61] 6.0353 6.9131 9.5425 27.9155 93.4952
10 Present 5.4723 6.2570 8.5295 24.0504 79.2548
MST [60] 5.4529 6.1945 8.4150 239178 79.2302
RPT [62] 5.4528 6.2026 8.4445 24.0660 79.7717
IGA [61] 5.4528 6.1674 8.3032 23.1847 76.2541
Biaxial compression (Nﬁ"ﬂ,N(’”),Nﬁ’;) =1,1,0)
0.5 Present 6.0800 7.0780 10.0781 31.1022 106.1940
MST [60] 6.0618 7.0745 10.1000 31.0834 105.6232
RPT [62] 6.0606 7.0772 10.1193 31.3072 106.7841
IGA [61] 6.0615 7.0425 9.9775 30.4094 103.1673
1 Present 4.6865 5.5017 7.9490 25.0897 86.2975
MST [60] 4.6696 5.4953 7.9630 25.0935 85.9820
RPT [62] 4.6695 5.4984 7.9795 25.2710 86.8932
IGA [61] 4.6696 5.4688 7.8602 24.5158 83.8473
2 Present 3.6447 4.2824 6.1925 19.5433 67.1946
MST [60] 3.6315 4.2710 6.1854 19.5365 67.1192
RPT [62] 3.6315 4.2740 6.2000 19.6665 67.7337
IGA [61] 3.6315 4.2490 6.0993 19.0282 65.1626
5 Present 3.0284 3.5007 4.8868 14.4394 48.4615
MST [60] 3.0177 3.4734 4.8395 14.3920 48.4902
RPT [62] 3.0177 34774 4.8550 14.4808 48.8364
IGA [61] 3.0177 3.4565 4.7712 13.9578 46.7476
10 Present 2.7363 3.1284 4.2640 12.0217 39.6153
MST [60] 2.7264 3.0972 4.2075 11.9589 39.6151
RPT [62] 2.7264 3.1013 4.2222 12.0330 39.8858

IGA [61] 2.7264 3.0837 4.1516 11.5924 38.1271
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Ta bI Normalized critical buckling load Ng = (NTa?/h3Ey) of Al/ALL,Os FGP square microplates with axial compression
(W™, ; ) N =1,0,0), f=0, a/h =10, SCSC and CCCC boundary conditions
h/l
p Theory 00 10 5 2 1
N
0.5 Present 20.4079 23.9355 34.5293 106.2774 360.4446
IGA [61] 20.7870 24.2336 344511 104.9240 355.0073
1 Present 15.7470 18.6220 27.2586 87.4220 300.6437
IGA [61] 16.0781 18.9077 27.2924 85.1205 290.3734
2 Present 12.2120 14.4381 21.1388 68.0160 234.9042
IGA [61] 12.4183 14.6427 21.2445 67.0440 230.0893
5 Present 10.0014 11.5889 16.3775 50.0462 170.4489
IGA [61] 9.9661 11.6057 16.4530 50.0703 169.7890
10 Present 8.9785 10.2705 14.1665 41.5532 139.4981
IGA [61] 8.8672 10.2203 14.1983 41.6312 139.1741
CCcc
0.5 Present 27.2737 31.9314 45.8300 140.3232 477.7048
IGA [61] 27.0706 31.6036 45.0313 137.6734 466.5827
1 Present 21.0949 24.8790 36.1457 114.3872 391.8628
IGA [61] 20.9471 24.6676 35.6870 111.7391 381.8401
2 Present 16.2844 19.2023 27.8882 88.3252 302.6476
IGA [61] 16.1682 19.0964 27.7817 88.0910 302.9154
5 Present 13.0268 15.1511 21.4006 64.5835 219.5999
IGA [61] 12,9218 15.0971 21.5034 65.8642 223.8079
10 Present 11.5736 13.3378 18.4901 53.8684 179.6851
IGA [61] 11.4711 13.2770 18.5512 54.7761 183.4780

Table 3. Normalized critical buckling load N = (NTa?/h3E,) of Al/Al,0; FGP square microplates (a/h =10,
5555), (N™, N&™ N = 1,0,0).

h/l
p p Theory ) 10 5 2 1
SSSS
0.1 0.5 Present 10.7948 12,6701 18.3088 57.8304 198.9871
1 Present 7.9448 9.4448 13.9488 45.4984 158.1497
2 Present 5.7630 6.8953 10.2914 34.0529 118.8672
5 Present 4.5302 5.3182 7.6301 23.5858 80.4325
10 Present 4.0691 4.6990 6.5045 18.7935 62.4979
0.2 0.5 Present 9.4762 11.2247 16.4823 53.3286 184.9203
1 Present 6.5272 7.8908 11.9841 40.6488 142.9793
2 Present 41773 5.1601 8.1107 28.7696 102.5064
Present 2.8570 3.4750 5.2956 17.9166 62.9178
10 Present 2.5287 2.9923 4.2978 13.1640 447111
Scsc
0.1 0.5 Present 18.1615 21.4830 31.4557 100.8126 346.1531
1 Present 13.3906 16.0431 24.0094 79.4346 275.5905
2 Present 9.6990 11.6851 17.6630 59.4432 208.0289
5 Present 7.5049 8.8335 12.8445 41.0540 141.9227
10 Present 6.6698 7.6989 10.8027 32.6080 110.5416
0.2 0.5 Present 15.9821 19.0868 28.4059 93.1467 321.8675
1 Present 11.0405 13.4593 20.7214 71.1660 249.3802
2 Present 7.0742 8.8085 14.0286 50.4483 179.7521
5 Present 4.7670 5.8212 9.0096 31.4459 111.6549
10 Present 4.1405 4.8922 7.1593 23.0534 79.7902
Cccc
0.1 0.5 Present 24.3601 28.7527 41.8178 1324741 453.8002
1 Present 18.0333 21.5132 31.8839 103.7666 358.2498
2 Present 13.0317 15.6155 233124 76.7932 264.9759
5 Present 9.8266 11.5830 16.7471 52.3538 179.5735
10 Present 8.5850 9.9884 14.0572 41.8132 123.2950
0.2 0.5 Present 21.5197 25.6169 37.8204 1223423 421.5245
1 Present 14.9569 18.1229 27.5534 92.7331 322.8644
2 Present 9.6040 11.8409 18.4980 64.5556 221.4257
5 Present 6.3170 7.6725 11.6563 38.6637 132.2340
10 Present 5.3232 6.3350 9.2270 26.8966 92.8254
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weights, and the activation function’s output data for the sum is supplied as follows [53]:

Ln—l
- -1
Vi=o@) =09 Zwij‘xy}‘ + 0! (27)
=1
where a data pair with output and input of activation function of node i which are y!' and x7,
respectively; b is the bias of node j; wj' is the weight between the output node i and input
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Figure 5. Variation of normalized critical buckling load for axial compression with respect the power index p and length scale-
to-thickness ratio h/l (a/h = 10, f = 0.1).
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node j; ¢ is the activation function. Many kinds of activation functions are available in the litera-
ture [54], in the present study, the long short-term memory network (LSTM) [55] will be applied
in which the tanh activation function is used for nodes of the input layer and hidden layers, and
the sigmoid activation function for the output nodes. The LSTM algorithm enhances the conven-
tional recurrent neural network (RNN) by addressing memory storage and gradient dispersion
issues. With its long short-term memory capabilities, the LSTM finds extensive application in
time-series prediction tasks. Depth series and time series share fundamental characteristics, with
each data point’s relationship extending from the past to the future. Consequently, the LSTM
models are suitable for forecasting deep formation penetration rates.

The flowchart of iBCMO-DNN algorithm is presented in Figure 3. It is noted that the input
and associated output of a data pair is namely a training data. A goal value will be estimated
from the corresponding input data in the training data, this goal value is compared with the cor-
responding output one to estimate the error value of the loss function. Moreover, in the present
study, the mean square error (MSE) [56] will be used for the process of training as follows:

L 2
MSE = %Z (yi -y 1.) (28)
1
where L is number of samples; y; is output data; y ; is goal data to be predicted. Furthermore,
the adaptive moment estimation (Adam) [57] to adjust weights and bias for minimizing the cost
function is determined by the gradient of the loss function. The batch gradient descent (BGD)
calculates gradients using the whole data set in the dataset and updates them only after all train-
ing data has been assessed. As a result, various deficiencies in memory, training speed, and stabil-
ity appear. Hence, in the current task, mini-batch gradient descent (mBGD) [58] was used.

3. Numerical results

In this section, numerical examples with the shear function f(x3) = x3 — 4x3/3h* [47] are per-
formed to explore the deterministic and stochastic responses of FGP microplates with various
BCs. The FGP microplates are expected to be made of a combination of ceramic and metal mate-
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Figure 6. Size effect of the MST for the normalized critical buckling load with respect to the length scale-to-thickness ratio h//
under axial compression, a/h = 10, and power-law index p = 1, SSSS boundary condition.
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rials with mean properties as follows: Al,O; (E. = 380 GPa, p, = 3800 kg/m’, o, = 7.4 x 1071/
C, v. =0.3), Al (E,, =70 GPa, p,, = 2702 kg/m3, ty = 23 x 107°1/C, v,,, = 0.3). For simplifica-
tion purposes, all three length scale parameters are considered to have the same value, ie., I} =
I, = I3 = I. In practice, these material length scale values should be derived mainly via experimen-
tal data. Unless special mention, square FGP microplates with three BCs (SSSS, SCSC, CCCC) are
considered in numerical examples, and for convenience, the following normalized parameters are
used in the computations:

T, =T, x1073 (29)

It is worth to noticing that the stretching-bending coupling effect appears in functionally
graded microplates due to the change of material properties in its thickness. This coupling produ-
ces deflection and bending moments when the microplate is subjected to in-plane compressive
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Figure 7. Size effect of the MCT and MST for the normalized critical buckling load with respect to the length scale-to-thickness
ratio h/I under axial compression, a/h = 10, SSSS boundary condition.
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loads. Earlier work [59] on buckling behaviors of functionally graded plates revealed that the
bifurcation-type buckling occurs when the functionally graded plate is fully clamped. For mov-
able-edge functionally graded plates, the bifurcation-type buckling occurs when the in-plane loads
are applied at the neutral surface. For the present FGP microplates, it is supposed that the buck-
ling analysis is performed for FGP microplates subjected to in-plane mechanical and thermal
loads (Eq. 14) acting on the neutral surface.

For stochastic analysis, the material characteristics (E,,, E, o, o, p) are assumed to be distrib-
uted randomly using uniform distributions, and the coefficient of variation (COV) is set at 10%
for all random variables.

For the convergence study of the present solution, Figure 4 shows the normalized critical
buckling temperatures T, of Al/Al,O; FGP microplates under biaxial compression with
a/h=20, p=5, f=0.1 and h/l = 5. The results are calculated with three types of BCs (SSSS,
SCSC, CCCC) and the same number of series in x;— and x,— direction (n; = n, =n). It is
observed from Figure 4 that the results converge quickly for a small number of series in which
the CCCC and SCSC boundary conditions having more kinematic constraints converge lower
than the SSSS one. Obviously, the number of series n = 8 can be ensure the stability and conver-
gence of the present solution, hence this value will be used for following numerical computations.

3.1. Deterministic buckling analysis

Example 1: This example aims to present a deterministic buckling analysis of FGP microplates
with unchanged material properties and subjected to mechanical membrane loads. To verify the
accuracy of the present theory in predicting buckling behaviors with deterministic material prop-
erties, Table 1 presents normalized critical buckling loads of simply supported FGM microplates
under mechanical loads in which the responses are calculated with both axial compression
(N, N™ N = 1,0,0) and biaxial compression (N, N\™, N =1,1,0), different values of
h/l =00, 10, 5, 2, 1, and no porosity effect is accounted (f = 0). These results are then com-
pared with those reported by Thai et al. [60], Thai et al. [61], and Zhang et al. [62]. It can be
seen from Table 1 that there are good agreements among models, the effects of thickness-to-
MLSP ratio impacted importantly on critical buckling loads of FGM microplates. Similarly, the
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Figure 8. The normalized critical buckling under impacting size effect of the MST and MCT with axial compression, a/h = 10,
=02 p=1.
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accuracy of the present model in predicting buckling behaviors is also verified as expected in
Table 2 for SCSC and CCCC boundary conditions of FGM microplates. Moreover, to investigate
the effects of porosity, material distribution, boundary conditions, and size effects in mechanical
buckling responses further, Table 3 introduces new numerical results of critical buckling loads for
the FGP microplates under uniaxial compression with porous parameter f§ = 0.1 and 0.2, side-to-
thickness ratio a/h = 10, different power indices p = 0.5, 1,2,5, 10, various values of h/l = oo,
10, 5, 2, 1, and three boundary conditions (SSSS, SCSC, CCCC). The variation of normalized crit-
ical buckling loads with respect to p and h/!I is also plotted in Figures 5 and 6. It is observed that
the critical buckling loads decrease with an increase in the power-law index p, porosity parameter
f, and thickness-to-MLSP ratio h/l. This phenomena can be explained by the fact that the
increase of p, f§ and h/I leads to the decrease of stiffness of the FGP microplates. It is interesting

Table 4. Normalized thermal critical buckling load T, of Al/Al,0; FGP square microplates with biaxial compression
(Ng"),N(zm,NﬁtZ') =1,1,0) and a/h = 20 under uniform temperature distribution.

h/l
BCs p Theory 9 10 5 2 1
SSSS
p=0 0 Present 0.4218 0.4835 0.6691 1.9704 6.6189
HSDT [63] 0.4215 - - - -
1 Present 0.1964 0.2303 0.3324 1.0482 3.6054
HSDT [63] 0.1962 - - - -
5 Present 0.1786 0.2046 0.2823 0.8242 2.7581
HSDT [63] 0.1785 - - - -
10 Present 0.1834 0.2073 0.2784 0.7736 2.5401
HSDT [63] 0.1831 - - - -
p=0.1 0 Present 0.5437 0.6265 0.8758 2.6239 8.8690
1 Present 0.2206 0.2622 0.3871 1.2629 43917
5 Present 0.1930 0.2244 0.3182 0.9728 3.3096
10 Present 0.2067 0.2354 0.3207 0.9130 3.0261
p=0.2 0 Present 0.7513 0.8705 1.2289 3.7427 12.7232
1 Present 0.2494 0.3015 0.4583 1.5576 5.4844
5 Present 0.1924 0.2318 0.3496 1.1726 4.1113
10 Present 0.2235 0.2596 0.3663 1.1071 3.7505
Scsc
p= 0 Present 0.6778 0.7785 1.0805 3.1951 10.7448
1 Present 0.3161 0.3716 0.5381 1.7036 5.8633
5 Present 0.2865 0.3282 0.4532 1.3291 4.4592
10 Present 0.2936 0.3317 0.4458 1.2450 4.1022
p=0.1 0 Present 0.8743 1.0093 1.4151 4.2562 14.4002
1 Present 0.3554 0.4233 0.6271 2.0541 7.1462
5 Present 0.3098 0.3601 0.5112 1.5695 5.3516
10 Present 03310 0.3764 0.5129 1.4686 4.8856
p=0.2 0 Present 1.2081 1.4029 1.9864 6.0725 20.6616
1 Present 0.4020 0.4873 0.7434 2.5356 8.9306
5 Present 0.3092 0.3726 0.5627 1.8936 6.6505
10 Present 0.3577 0.4146 0.5853 1.7804 6.0543
cccc
p=0.0 0 Present 1.0893 1.2534 1.7454 5.1862 17.4462
1 Present 0.5092 0.5997 0.8710 2.7683 9.5260
5 Present 0.4587 0.5266 0.7303 2.1551 7.2379
10 Present 0.4691 0.5310 0.7169 2.0168 6.6553
p=0.1 0 Present 1.4057 1.6260 2.2871 6.9105 23.3840
1 Present 0.5731 0.6839 1.0162 3.3393 11.6128
5 Present 0.4965 0.5786 0.8248 2.5465 8.6892
10 Present 0.5285 0.6026 0.8249 2.3793 7.9270
p=0.2 0 Present 1.9443 2.2614 3.2123 9.8621 33.5549
1 Present 0.6491 0.7883 1.2057 4.1243 14.5162
5 Present 0.4969 0.6002 0.9100 3.0767 10.8067
10 Present 0.5710 0.6638 0.9419 2.8862 9.8272
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to see that the size effects of FGP microplates are importantly significant from h/I < 20 for both
FGM microplates (ff = 0) and FGP microplates (ff = 0.1,0.2). Figure 6 also shows that the por-
osity effect does not impact significantly on the size effects of FGP microplates with boundary
condition. This can be explained by the fact that the effective properties of functionally graded
porous materials are calculated in Eq. (1) based on the volume average approximation in which
the effect of geometric size of porosity has not been considered.

To examine the size effects of FGP microplates further, Figures 7 and 8 provide the variation
of the proportion of critical buckling loads derived from the MST and MCT with respect to h/I.
The results are computed for FGP microplates with a/h =10, f=0.2, p=1 and different
boundary conditions. Three curves are observed in which the highest and lowest curves corres-
pond to the SSSS and CCCC boundary conditions, respectively. It is clear from these graphs that

Table 5. Normalized thermal critical buckling load T, of Al/ALLO; FGP square microplates with biaxial compression
(Ng"),N(zm,NﬁtZ') =1,1,0) and a/h = 20 under linear temperature distribution.

h/l
BCs p Theory 9] 10 5 2 1
SSSS
p=0 0 Present 0.8325 0.9543 1.3206 3.8889 13.0637
HSDT [63] 0.8330 - - - -
1 Present 0.3638 0.4266 0.6157 1.9416 6.6783
HSDT [63] 0.3587 - - - -
5 Present 0.3040 0.3483 0.4804 1.4026 4.6940
HSDT [63] 0.2987 - - - -
10 Present 0.3213 0.3632 0.4879 1.3556 4.4515
HSDT [63] 0.3156 - - - -
p=0.1 0 Present 1.0730 1.2366 1.7286 5.1788 17.5047
1 Present 0.4050 0.4813 0.7106 2.3183 8.0619
5 Present 0.3141 0.3652 0.5178 1.5831 5.3857
10 Present 0.3468 0.3949 0.5379 1.5314 5.0761
p=0.2 0 Present 1.4829 1.7181 2.4255 7.3868 25.1115
1 Present 0.4521 0.5467 0.8310 2.8240 9.9438
5 Present 0.3095 0.3488 0.5261 1.7647 6.1874
10 Present 0.3436 0.3992 0.5633 1.7023 5.7669
Scsc
p= 0 Present 1.3378 1.5366 2.1325 6.3061 21.2068
1 Present 0.5856 0.6883 0.9967 3.1556 10.8606
5 Present 0.4876 0.5585 0.7713 2.2619 7.5890
10 Present 0.5146 0.5812 0.7812 2.1818 7.1888
p=0.1 0 Present 1.7258 1.9921 2.7929 8.4005 28.4214
1 Present 0.6524 0.7771 1.1513 3.7707 13.1183
5 Present 0.5041 0.5860 0.8319 2.5540 8.7086
10 Present 0.5552 0.6315 0.8604 24634 8.1952
p=0.2 0 Present 2.3846 2.7688 3.9205 11.9852 40.7795
1 Present 0.7289 0.8836 1.3478 4.5974 16.1921
5 Present 0.4953 0.5607 0.8468 2.8499 10.0089
10 Present 0.5501 0.6375 0.9000 27376 9.3093
cccc
p=0.0 0 Present 2.1500 24738 3.4449 10.2358 344334
1 Present 0.9432 1.1108 1.6134 5.1277 17.6450
5 Present 0.7806 0.8962 1.2429 3.6677 12.3179
10 Present 0.8220 0.9306 1.2564 3.5343 11.6630
p=0.1 0 Present 2.7744 3.2092 45141 13.6392 46.1527
1 Present 1.0521 1.2554 1.8654 6.1301 21.3176
5 Present 0.8079 0.9416 1.3422 4.1440 14.1401
10 Present 0.8865 1.0109 1.3838 3.9911 13.2970
p=0.2 0 Present 3.8373 4.4632 6.3400 19.4646 66.2268
1 Present 1.1769 1.4292 2.1860 7.4777 26.3194
5 Present 0.7878 0.9033 1.3695 4.6303 16.2639
10 Present 0.8779 1.0207 1.4484 4.4380 15.1107
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the MST with three MLSPs generates the critical buckling loads much larger than the MCT with
one MLSP, especially when the MLSP is close to the microplate thickness. As seen in Figures 7
and 8, for h/l =1 and SSSS boundary condition, the critical buckling loads obtained from the
MST are greater than three times than those from the MCT. The differences between these theo-
ries are sharply decreased up to h/I = 20 from which the size effects can be neglected. It under-
lines how crucial it is to take into account three MLSPs while dealing with microplate problems.
Example 2: The next example is to consider deterministic critical buckling temperatures.
Tables 4-6 present normalized critical buckling temperatures of FGP microplates with three types
of temperature distribution (UTR, LTR, NLTR), a/h =20, p =0,1,5,10 and h/l = oo, 10, 5, 2,
1. For verification purposes, the obtained critical buckling temperatures for FGM plates without
porous parameters (ff = 0) and size effect are compared to those provided by Zenkour et al. [63],
Yaghoobi et al. [64]. It is seen that there are good agreements among the models. The porosity

Table 6. Normalized thermal critical buckling load T, of Al/Al,0; FGP square microplates with biaxial compression
(N%"),N(z"),Ngtz’) =1,1,0) and a/h = 20 under nonlinear temperature distribution.

h/l
BCs p Theory 00 10 5 2 1
SSSS
p= 0 Present 0.8436 0.9670 1.3382 3.9407 13.2379
FSDT [64] 0.8330 - - - -
1 Present 0.6554 0.7687 1.1094 3.4982 12.0321
5 Present 0.4326 0.4955 0.6836 1.9956 6.6784
FSDT [64] 0.3746 - - - -
10 Present 0.4042 0.4569 0.6137 1.7051 5.5989
FSDT [64] 0.3660 - - - -
p=0.1 0 Present 1.0873 1.2531 1.7517 5.2479 17.7381
1 Present 0.7327 0.8706 1.2855 4.1939 14.5842
5 Present 0.4449 0.5173 0.7335 2.2425 7.6292
10 Present 0.4347 0.4951 0.6744 1.9199 6.3640
p=0.2 0 Present 1.5027 1.7410 24579 7.4853 25.4463
1 Present 0.8232 0.9954 1.5131 5.1421 18.1060
5 Present 0.4372 0.4907 0.7401 24824 8.7039
10 Present 0.4283 0.4976 0.7020 2.1216 7.1875
Scsc
p= 0 Present 1.3557 1.5569 2.1610 6.3902 21.4896
1 Present 1.0550 1.2402 1.7957 5.6854 19.5674
5 Present 0.6937 0.7946 1.0974 3.2182 10.7974
10 Present 0.6473 0.7311 0.9826 27443 9.0419
p=0.1 0 Present 1.7486 2.0186 2.8301 85125 28.8004
1 Present 1.1802 1.4058 2.0827 6.8214 23.7315
5 Present 0.7141 0.8301 1.1785 3.6179 12.3362
10 Present 0.6960 0.7917 1.0787 3.0884 10.2745
p=0.2 0 Present 24162 2.8058 3.9728 12.1451 41.3232
1 Present 1.3272 1.6089 2.4541 83710 29.4832
5 Present 0.6976 0.7987 1.1912 4.0090 14.0796
10 Present 0.6856 0.7946 1.1217 3.4120 11.6025
cccc
p =00 0 Present 2.1787 2.5067 3.4908 10.3723 34.8925
1 Present 1.6994 2.0013 2.9068 9.2386 31.7907
5 Present 1.1107 1.2751 1.7684 5.2183 17.5254
10 Present 1.0341 1.1705 1.5802 4.4453 14.6694
p=0.1 0 Present 28114 3.2520 4.5743 13.8211 46.7680
1 Present 1.9033 2.2712 3.3745 11.0895 38.5645
5 Present 1.1445 1.3338 1.9013 5.8702 20.0301
10 Present 1.1114 1.2674 1.7348 5.0036 16.6705
p =02 0 Present 3.8886 4.5227 6.4246 19.7241 67.1098
1 Present 1.2290 2.6023 3.9804 13.6157 47.9233
5 Present 1.1218 1.2907 1.9265 6.5135 22.8785
10 Present 1.0944 1.2722 1.8052 55312 18.8330
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and size effects on critical buckling temperatures reporting new numerical results are presented
in Tables 4-6 and will be used as benchmarks for future researches. Figures 9-11 also display the
varijation of the critical buckling temperature with respect to the power-law index p, porosity par-
ameter [, different temperature distributions (UTR, LTR, NLTR), and boundary conditions. It is
interesting to observe from these graphs that the critical buckling temperatures increase with the
porosity parameter f3, this can be explained by the fact that an increase of the porous parameter
led to the increase of the thermal conductivity coefficient and therefore it requires a higher criti-
cal buckling load. Furthermore, the effect of three types of temperatures (UTR, LTR, NLTR) with
respect to h/l is also displayed in Figures 9-11 for the microplates. The highest and lowest values
are associated with the NLTR and UTR, respectively.

3.2. Stochastic analysis of critical buckling temperature

Example 3: The objective of this example is to examine the optimal random range [a;, ;] and
probability threshold { serving for studying stochastic critical buckling temperatures of FGP
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Figure 9. Variation of normalized thermal buckling load with respect the length scale-to-thickness ratio h/l (a/h = 20) with
biaxial compression and uniform temperature distribution.
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Figure 10. Variation of normalized thermal buckling load with respect the length scale-to-thickness ratio h/I (a/h = 20) with
biaxial compression and linear temperature distribution.

microplates. As explained in the introduction section, the BCMO is a meta-heuristic algorithm
that enables to optimize responses and saves the computational costs [38]. However, in practice,
the original BCMO algorithm will take a long time to tackle complicated problems, such as sto-
chastic size effects. Alternatively, by narrowing the random range in [a;, b1] € [0, 1] and changing
the probabilistic threshold { in the optimization process of solution field, and using the DNN for
learning behaviors, the present iBCMO-DNN provides a novel intelligent computational algo-
rithm for solving stochastic problems.

To determine the optimal random range [a;, b;], Table 7 presents the comparison of the nor-
malized critical buckling temperature T, of simply supported Al/Al, O; FGP square microplates
under uniform temperature distribution. The results are computed with different random ranges
[a1, b1, side to thickness ratio a/h = 20, porous coefficient § = 0.1, power-index p =1, thick-
ness-to-MLSP ratio h/l =10, biaxial compression (NY”,NQ”,N&" =1,1,0), and probability



22 V.-T. TRAN ET AL.

(o))
o

N
o

N w
o o

=y
o

Critical Buckling Temperature

o

@
o

(o2}
o

N
o

Critical Buckling Temperature
S
o

hil

IS
o

w
o

Critical Buckling Temperature
N
o

10
0 - m—
5 10 15 20
hil
(d) SSSS, p=05
o 25
§ —6—3=0
g 20 -k 3= 0.1
a ] - B8=0.2
g i B#=0.3
2 154
(@)}
£
~ 10
[S]
=1
m
o o
o
S o -
5 10 15 20
h/l

(g) SSSS, p=1

o

Critical Buckling Temperature

5 10
hil

(e) SCSC, p=05

15

20

Critical Buckling Temperature

4

5 10
hil

(h) SCSC, p=1

15

20

Critical Buckling Temperature Critical Buckling Temperature

Critical Buckling Temperature

-
N
o

N
o
o

o]
o

D
o

EN
o

N
o

o

100

80

10
h

(f) CCCC, p=0.5

15

20

(o2
o

404
30
20
10
0 ©
5 10 15 20
bl

(i) CCCC, p=1

Figure 11. Variation of normalized thermal buckling load with respect the length scale-to-thickness ratio h// (a/h = 20) with
biaxial compression and nonlinear temperature distribution.

Table 7. Comparison of the rand coefficient of the Ritz-IBCMO algorithm for the normalized critical buckling temperature T,
of Al/Al,0; FGP square microplates with a/h =20, f=0.1, p=1, h/I =10 with biaxial compression (N1fr),N£rr),Ngt2') =
1,1,0) under uniform temperature distribution and simply supported boundary condition.

Theory Mean SD Time(s) Present
rand(0, 1) 0.2630 0.0124 3611 0.2622
rand(0.1,0.9) 0.2628 0.0099 2156
rand(0.2,0.8) 0.2624 0.0073 2116
rand(0.3,0.7) 0.2624 0.0051 2107
rand(0.4,0.6) 0.2623 0.0026 2066
rand(0.4,0.7) 0.2589 0.0036 1952
rand(0.4,0.9) 0.2523 0.0056 1999
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Figure 12. Comparison of the efficiency of the rand coefficient differences for iBCMO algorithm of normalized thermal buckling
load with biaxial compression, a/h =20, p=1, h/I=10, =0.1, uniform temperature distribution, SSSS boundary
condition.

threshold { = 0.6. It can be seen that as the random range steadily narrows, the standard devi-
ation (SD) and computational time decreases. In comparison, the symmetric cases with
rand(0.2,0.8), rand(0.3,0.7), and rand(0.4,0.6) show the rationality of the mean value and com-
putational cost. Moreover, in order to investigate the choice of random range further, Figure 12
displays the probability density function (PDF) and probability of exceedance (PoE) of normal-
ized critical buckling temperature with various values of the random ranges. It is observed that
the asymmetric ranges (0.4,0.7) and (0.4,0.9) provide significant deviations of the mean values
with the exact value, therefore the asymmetric ranges are not suitable for the present stochastic
analysis. For the symmetric cases, it appears that the ranges of (0.3,0.7) and (0.4,0.6) present
uneven graphs, while the random range (0.2,0.8) is found to be appropriate for stochastic
responses, therefore the random range [a1,b1] = [0.2,0.8] will be selected for the following
numerical examples.

Furthermore, Figure 13 plots the probability density function of critical buckling loads of FGP
microplates for different values of probabilistic threshold. It can be observed from this graph that
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Figure 13. Comparison of the efficiency of the probabilistic threshold (TV) differences for iBCMO algorithm of normalized ther-
mal buckling load with biaxial compression, a/h =20, p=1, h/I =10, f=0.1, uniform temperature distribution, SSSS
boundary condition.

Table 8. Comparison between BCMO and iBCMO algorithms for the normalized critical buckling temperature T, of Al/Al,O3
FGP square microplates with a/h =20, # = 0.1, p = 1 with biaxial compression and uniform temperature distribution

BCs h/l Theory Mean SD Time(s) Present

SSSS 10 Ritz-BCMO 0.2634 0.0120 3611 0.2622
Ritz-iBCMO 0.2624 0.0073 2116

1 Ritz-BCMO 4.4061 0.1996 3618 43917
Ritz-iBCMO 43999 0.1169 2124

SCsC 10 Ritz-BCMO 0.4250 0.0195 3683 0.4233
Ritz-iBCMO 0.4243 0.0117 2127

1 Ritz-BCMO 7.1609 0.3134 3651 7.1462
Ritz-iBCMO 7.1610 0.1900 2133

CCcC 10 Ritz-BCMO 0.6860 0.0312 3653 0.6839
Ritz-iBCMO 0.6850 0.0195 2123

1 Ritz-BCMO 11.6378 0.5202 3652 11.6128
Ritz-iBCMO 11.6345 0.3095 2119

the probability threshold coefficient { = 0.6 has the most uniform data density, that numerically
confirms the correctness of this coefficient in the computations.

Example 4: To demonstrate the performance of the present theory in predicting stochastic
buckling temperatures of FGP microplates further, Table 8 introduces the comparison of both
BCMO and iBCMO algorithm for normalized critical buckling temperature T, of FGP micro-
plates under uniform temperature distribution with a/h =20, f =10.1, and p = 1. It can be seen
that the computational cost from the iBCMO is lower about 1.7 times than that of the BCMO for
different boundary conditions, with same mean values, the standard deviation from the iBCMO
is much smaller than that from the BCMO. This is also verified by Figure 14 which displays the
probability density function of thermal buckling loads of FGP microplates under uniform tem-
perature distribution with a/h =20, p =1, and h/I = 10.
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Figure 14. Comparison of the efficiency of iBCMO with the BCMO algorithm of normalized thermal buckling load, a/h = 20,
p =1, h/I =10, biaxial compression and uniform temperature distribution.

To investigate stochastic critical buckling temperatures of FGP microplates, it is noted that five
random variables of material properties (E,, ;, E > o, > 0m,i» p) are designed to be randomly dis-
tributed with the same population size NP = 2000. Additionally, the data training was generated
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Table 9. Mean and standard deviation (SD) of normalized critical buckling temperature for FGP microplates with biaxial com-
pression, a/h = 20, SSSS boundary condition and uniform temperature distribution.

B p h/l Theory Mean SD Time(s) Present
0.1 0.5 10 Ritz-iBCMO 0.3291 0.0089 2123 0.3284
iBCMO-DNN 0.3307 0.0091 845
1 Ritz-iBCMO 5.1633 0.1343 2125 5.1596
iBCMO-DNN 5.1688 0.1347 844
2 10 Ritz-iBCMO 0.2239 0.0066 2124 0.2236
iBCMO-DNN 0.2259 0.0071 845
1 Ritz-iBCMO 3.8358 0.1084 2123 3.8278
iBCMO-DNN 3.8315 0.1082 846
0.3 0.5 10 Ritz-iBCMO 0.4960 0.0152 211 0.4952
iBCMO-DNN 0.4995 0.0151 840
1 Ritz-iBCMO 8.6618 0.2454 2126 8.6440
iBCMO-DNN 8.6669 0.2460 841
2 10 Ritz-iBCMO 0.2373 0.0122 2127 0.2370
iBCMO-DNN 0.2389 0.0124 842
1 Ritz-iBCMO 6.2104 0.1712 2123 6.2009
iBCMO-DNN 6.2155 0.1718 843

Table 10. Mean and standard deviation (SD) of normalized critical buckling for
a/h = 20, SCSC boundary condition and uniform temperature distribution.

FGP microplates with biaxial compression,

p p h/l Theory Mean SD Time(s) Present
0.1 0.5 10 Ritz-iBCMO 0.5307 0.0147 2129 0.5299
iBCMO-DNN 0.5311 0.0146 841
1 Ritz-iBCMO 8.4103 0.2165 2127 8.3968
iBCMO-DNN 8.4133 0.2173 845
2 10 Ritz-iBCMO 0.3614 0.0106 2124 0.3607
iBCMO-DNN 0.3658 0.0108 843
1 Ritz-iBCMO 6.2261 0.1744 2122 6.2152
iBCMO-DNN 6.2249 0.1740 840
0.3 0.5 10 Ritz-iBCMO 0.8008 0.0243 2133 0.7999
iBCMO-DNN 0.8014 0.0244 842
1 Ritz-iBCMO 14.1140 0.3999 2128 14.0821
iBCMO-DNN 14.1184 0.4009 844
2 10 Ritz-iBCMO 0.3843 0.0195 2127 0.3839
iBCMO-DNN 0.3849 0.0197 843
1 Ritz-iBCMO 10.1095 0.2818 2124 10.0882
iBCMO-DNN 10.1109 0.2826 841

Table 11. Mean and standard deviation (SD) of normalized critical buckling for
a/h = 20, CCCC boundary condition and uniform temperature distribution.

FGP microplates with biaxial compression,

p p h/l Theory Mean sD Time(s) Present
0.1 0.5 10 Ritz-iIBCMO 0.8568 0.0229 2122 0.8555
iBCMO-DNN 0.8575 0.0231 840
1 Ritz-iIBCMO 13.6636 0.3535 2125 13.6417
iBCMO-DNN 13.6659 0.3541 841
2 10 Ritz-iBCMO 0.5831 0.0170 2124 0.5825
iBCMO-DNN 0.5838 0.0172 840
1 Ritz-iIBCMO 10.1182 0.2835 2124 10.1004
iBCMO-DNN 10.1197 0.2842 843
0.3 0.5 10 Ritz-iBCMO 1.2957 0.0395 2119 1.2936
iBCMO-DNN 1.2967 0.0398 844
1 Ritz-iIBCMO 229234 0.6409 2121 22.8856
iBCMO-DNN 22.9287 0.6413 843
2 10 Ritz-iBCMO 0.6249 0.0316 2127 0.6233
iBCMO-DNN 0.6255 0.0318 842
1 Ritz-iIBCMO 16.4441 0.4720 2126 16.4167
iBCMO-DNN 16.4458 0.4726 844
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Figure 15. Quantile-quantile plot of the Ritz-iBCMO model with DNN-iBCMO, a/h =20, p=1, h/I =5, f = 0.1, 0.2, biaxial
compression and uniform temperature distribution.

from the earlier analysis of Ritz-iBCMO solution. These values will be evaluated for the accuracy
through the training process using the long short time memory model of the deep learning net-
work. The initial normalization of the critical buckling temperatures is used as the output data
for training samples, and these design factors are taken into consideration as the input data.
Input-output pairs and randomly generated training samples are included in the data set, which is
used to train via the DNN. It is worth noticing that the DNN processing involves 500 iterations with
one epoch between each one, the DNN structure is 110-110-4. The data was divided into two groups
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Figure 16. Quantile-quantile plot of the Ritz-iBCMO model with DNN-iIBCMO, a/h =20, p =1, h/I =5, =0.3, 0.5, biaxial
compression and uniform temperature distribution.

with 80% for the training set and 20% for the test set. The type of DNN is the long short time mem-
ory with tanh function for hidden layers and sigmoid function for output layer.

For Al/AL,O; FGP microplates with three boundary conditions, the mean and standard deviation of
normalized critical buckling temperatures from the Ritz-iBCMO and iBCMO-DNN models are shown
in Tables 9-11. The critical buckling temperature responses are computed for the side-to-thickness
ratio a/h = 20, porous parameter = 0.1 and 0.3, power-law index p = 0.5 and 2, thickness-to-
MLSP ratio h/l =1 and 10. Obviously, the statistical moments of the critical buckling temperatures
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Figure 17. Probability density function (PDF) of Ritz-iBCMO and iBCMO-DNN methods the normalized thermal buckling with
a/h=20, p=1, h/l=5, f=0.1, 0.2, biaxial compression and uniform temperature distribution.

derived from the Ritz-iBCMO and iBCMO-DNN show good agreements for all cases. For all BCs, var-
ied power-law indexes p and porosity parameters 5, the mean values of the critical buckling tempera-
tures for the Ritz-iBCMO and iBCMO-DNN are close to the deterministic responses. As expected, the
critical buckling temperatures rise with the increase of ff and h/l. In the comparison of the computa-
tional time between the theories, the iBCMO-DNN approach takes less computational times than the
Ritz-iBCMO method. The computational time of the iBCMO-DNN method is about 2/5 that of the
Ritz-iBCMO method. Additionally, the performance of the current iBCMO-DNN algorithm in predict-
ing buckling temperature responses is also shown in Figures 15-19 in which the mean square error is
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Figure 18. Probability density function (PDF) of Ritz-iBCMO and iBCMO-DNN methods the normalized thermal buckling with
a/h=20, p=1, h/l=5, f=0.3, 0.5, biaxial compression and uniform temperature distribution.

almost nil for both training and test sets. Figures 17 and 18 describe the probability density function
of the critical buckling temperatures generated from the Ritz-iBCMO and iBCMO-DNN analysis. It
can be seen again that the results of iBCMO-DNN are in good agreement with the Ritz-iBCMO. This
proves that the present model in capturing size effects with the uncertainty of material properties based
on the unified HSDT, Ritz solution and iBCMO-DNN is completely reliable. Finally, it can be seen
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that the improved balance composite motion optimization algorithm demonstrates a computational
time faster than its predecessor. Furthermore, integrating a deep neural network into the improved
algorithm reduces computational time compared to the method without it. The iBCMO-DNN method
presented in this paper significantly helps save time and cost in predicting stochastic buckling behav-
iors of FGP microplates.

4. Conclusions

This research proposed a novel intelligent computational algorithm, namely iBCMO-DNN, for
stochastic buckling temperature analysis of FGP microplates with uncertainty of material proper-
ties. It utilized a deep feedforward neural network made with the long short-term memory model
to replace time-consuming computational methods. An improved BCMO algorithm was also used
to search for optimal solutions. Deterministic responses of the microplates were obtained using a
unified HSDT and MST approach. Ritz-iBCMO and iBCMO-DNN were two algorithms created
to study how different factors affect the critical buckling temperatures of FGP microplates. The
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numerical results demonstrated the accuracy and efficiency of the proposed model in predicting
stochastic buckling temperatures. The following significant points might be deduced as follows:

The current unified HSDT and MST are proven to be accurate and effective in predicting the
buckling responses of FGP microplates.

An important difference in critical buckling loads is derived from the MST and MCT for the
MLSP-to-thickness ratio h/l < 20, the MST hence showed its accuracy for capturing the size
effects of FGP microplates.

The porosity does not impact significantly on size effects of the FGP microplates.

The critical buckling temperature increases with an increase in the porosity density.
Meanwhile, critical buckling temperature decreases with an increase in the power-law index
and thickness-to-MLSP ratio h/I.

The computational cost of the proposed iBCMO algorithm is lower 1.7 times than that of the
existing BCMO method.

The proposed iBCMO-DNN algorithm provides for substantial cost savings in computing sto-
chastic buckling responses of FGP microplates. The computational time of critical buckling
temperatures from the iBCMO-DNN approach requires ~2/5 that from the Ritz-iBCMO
method.
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Appendix A
The strain components of the FGP microplates.
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The non-zero components of deviatoric stretch gradients 1,5 are given by:
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Appendix B
The FGP microplates stiffness components are described as follows:
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Appendix C
The stiffness matrix’s components K¢ are given as follows:

K;ill = A5<Ti3k351910 + Tizkzsjlll))KSilz _ Aé(T}:SjZIO + Tlpkzsjsll) (C.1a)

Ko = BE(TRS) + TSP + TS} + 1328} (C.1b)

Kt = BE(TRSY + T2} ), K00 = B (TS + TS ) (C.1¢)

Kiip = A% (ST + 1Y), Kt = B (T3S + TSP + TS + TS} (C.1d)
Kt = B (s TES), G = B (T ¢ TsY) c1o

Kg = D (Tgs]@,‘) + TPSY + TSP + TS + TSy + TSP + Ty!S7 + Tf,fs}})

Dc’ 22600 | 20602 4 02620 | 0022 (C.1)
+ (ikjl+ ik o + Ly Sy + ikjl)
Kot = DF (TSP + TR + TR} + TS ) + D3 (TS + TSy (C1g)
£35 ¢ 13 @20 11 Q22 02 31 00 ¢33 ~¢& 02 ¢20 00 @22
K = D; (Tik S+ Ty S + TSy + TS ) +D; (Tik Si + Ty Sji ) (C.1h)
44 48 ¢ ¢ 45 _ pé & ¢ .
Koy = HLTRS) + Hi TSy + HJTESY, Koy = HI TSP + Hi TSy + H TSy (C.li)
£55 ¢ ¢ e ;
Ky = He TSy’ + H; Ty S + HU TS| (C1j)
The components of stiffness matrix K are defined as follows:
Al
Kl = % (22T3k3sg° — LTy S = LIPS + 18T S + 72Tszs};) (C.22)
niz 24" T13 620 T92 631 11622 722511 B
ijkl_E(_ll ik S — W TSy + 18Ty S + 18T, jl) (B.2a)
B"
K =3z (22T;;sj°,° — 1TSS — 33TPSY + 54TH S — 22TPS3 + mSTszS;,l)
I (C.2b)
=55 (TR TSR + 14T )
B AN
14
Ki = 55 (221081 = 0TS - nTRsP +18TSP + 7217)' ) = T2 (TR + 71387
(C.20)
2B 14A"
Kii = 52 (18T}klsff — 11TRSY + 18T2S)! — 11T§’k23]?,1) - TS (C2d)
A
Kl = % (72T5§Sf,2 +22TRSY — TS — 11TYS) + 18T§,§S}ll) (C.2e)
B!
Kt =3z (22T3?sjl3 — 2273182 + 108T}S2 — 11TRS3 — 337208} + 54TiZSJ?,1)
Al (C.21)
=55 (T s+ 71Ps) + TSy
2B 14A
= 5o (FITYSE 18T + 18TRS) - TS ) - S TSy (B.2a)
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B'? 11 Q22 00 o33 02 @31 20 13 22 ¢l1 Ar] 2 oll 00 ¢13

i :2—;(72T,.k ST+ 22108 — 11TPSY — 11TSY + 18722} ) —2—53(77& S+ 1173 sjl)
(C.2g)
Ul
33
K =53

D
+ (22T3<°Sj3l3 — 33TPSY — 33T3k°s}l3)

(22T,.3,fs]9,° — 33T3S% — 338X + 162THS2 + 162T§35}}>

Ui
%
—% (11T1.°k°sjll3 +UTRSY + 11TESY + 11T3§Sj3,1)
- (22—5 (21?}35}; AT + 2T + 21T§k°s}ll)
| Hit2F + D7 ZZFSZ +D' (18T1.2,3$]9,° —TT2S% — 7TPSY + 18TST + 100T}klsj1,1>

18H

11 00 0 Q11
+st (T + 1))

(C.2h)

D!
Kg,f;‘ = —zg (22T§S§}° - 33T,/ S — 11T S) + 54T, ST — 22T 'S) + 108T3,3$}ll)
Q! 3000 o\  HL+TJl +FlL+D!
——255 (11T}k Sii +21T§}Sﬂ ) 4+ 525 s s

PZ 20 ol1 31 00 11 Q20 18171,1 11 00
——255 (14T1.k i + 11Ty S + 7Ty S ) +— STy Sp

(18T§3$§° — TSP + 50T s}ll)

(C.21)
D
35
K =22 (108T;,3 S22 + S4TZ2S + 22T — 33TRS — 117285 — zzT};sflO)

A1 n Th h 1
H F'+D
_Q (21T335},1 + 11T3?s}ﬁ) 4 Bt i + B 4 Ds

(18T2<08j212 —7T3S% + 50T5}s}l‘>

% 5
F 18H
-k (14T}klsj2,° +1TLS) + 7Tfk°s},1) + TS
(C.2j)
H! 18H!
K;]?;j;‘ = 2_; (22Tfk3820 - 11T} Sff - 11T;3s]?l° + 18T} sjz,2 + 72Tl.2,35},1) + > fs T},jsjol0
HL+2]) +H' F]
% (18Ti2kzs]@'l° + 25T},§s}ll) - (11Tfklsj@'l° +7TASY + 11TESY + 7T},§sjf}2)
(C.2k)
N 14F]
Kii = 5o (36TRSP + 36 T8} - 2218} - 2218} ) = == (TS} + 1))
' = ] —]ﬂ 1 ’ ! ! 25 ! g (C.2)
H! +2] +H
s+ 2];1; + H (25Ti1k18jlll _ 7T3€ZS]?ZO>
H! 18H!
Kl = 2 (72T5§Sff + 22T — 1ITES) — 11TRS) + 18T},§S}ll) + TSy
H + 2] + H! F,
% (18T3€0812l2 4 25Ti1klsjlll> _ 27?;5 (llTi(;cosjlf + 7T2(28}11 + llTl(;cOSJSZI + 7T12kOS]111)
(C.2m)
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Abstract

Purpose This research proposes novel computational methods, namely the Ritz—Hermite and Ritz—Laguerre methods, for
the analysis of porous metal foam (PMF) microplates.

Method The analysis is based on higher-order shear deformation theory and modified couple stress theory, incorporating a
constant material length scale parameter. The dynamic responses of the microplates under an explosive blast load are
determined using Newmark’s technique. The proposed Ritz method employs orthogonal polynomial-generated shape
functions, constructed as hybrid functions by combining a base polynomial with a series of orthogonal polynomials
(Hermite and Laguerre), ensuring compliance with required boundary conditions.

Results and Conclusion The proposed methods exhibit superior convergence speed and stability compared to alternative
shape functions. The study presents, for the first time, the dynamic responses of PMF microplates under various loads,
including explosive blasts, triangular, and rectangular patterns. The research investigates the effects of the material length
scale parameter, damping factor, side-to-thickness ratio, porosity coefficient, porosity distribution, and boundary conditions
on the vibration, buckling, and transient responses of PMF microplates. The findings, supported by numerical results,
highlight the efficiency and accuracy of the proposed computational methods in predicting the structural characteristics of
PMF microplates.
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Strains

Symmetric rotation gradients

Cauchy stress

The high-order stress corresponding with
strain gradients y

Material length scale parameters

The shape functions in direction in x;—,
Xy —

5 ax®

~

Ti(x1), Fj(x2)

Introduction

Owing to their distinctive properties in energy absorption
capacity, high strength, and lightweight design, porous
materials have been applied in various engineering fields,
such as aerospace and the petrochemical industry [1-4]. In
practice, the development of such materials accompanied
efficiently computational methods and models in order to
predict accurately their responses at different structural
scales.

Earlier experimental work has shown that constituent
size effects need to be considered when computing the
responses of micro and nanoscale structures. In this con-
text, it is well known that classical elasticity theory is
inadequate; therefore, surrogate theories accounting for
size effects have been explored to calculate their responses.
One such theory is the modified couple stress theory
(MCT) proposed by Yang [5], which used a single material
length scale parameter (MLSP) to account for the size
effects. Because of its simplicity, the MCT has been used
for size dependent analysis of functionally graded (FG) and
functionally graded porous (FGP) microplates with differ-
ent porosity densities. Li et al. [6] investigated thermal-
electric effects on dynamic behaviors of FG piezoelectric
sandwich microplates by using the MCT and hyperbolic
tangential mixed shear deformation theory. Tran et al.
[7, 8] developed a unified higher-order shear deformation
theory (HSDT) using the MCT and Ritz method to analyze
vibration and buckling behaviors of FGP microplates. Fan
et al. [9] employed isogeometric analysis (IGA) and HSDT
to investigate the nonlinear vibrations of FGP microplates.
Farzam and Hassani [10] investigated the structural
responses of FGP microplates using the IGA and a refined
HSDT. Using the classical plate theory (CPT), first-order
shear deformation theory (FSDT), MCT and Navier’s
solution, Kim et al. [11] demonstrated the structural
responses of FGP microplates. The nonlinear buckling and
vibration responses of FGP microplates were examined by
Thanh et al. [12] utilizing the MCT, IGA and a HSDT. An
alternative approach for exploring the size effects is to
utilize the modified strain gradient theory (MST) by
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introducing the effects of rotation, dilatation and deviatoric
stretch gradients in constitutive equations [13], which
incorporates three MLSPs. This methodology has been
applied to forecast the behaviors of microstructures
[14-17]. In comparison, the MST could predict
microstructures’ responses more accurate than the MCT
owing to accounting for three MLSPs, however this
method is complicated in theoretical formulation and
implementation. Moreover, the nonlocal elasticity theory
(NET), also known as Eringen’s theory, is another method
for capturing the size effects for nanostructures [18]. The
NET has been applied to analyze FGP nanoplates [19-23]
by including the nonlocal parameter in constitutive
equations.

The exceptional material properties of porous metal
foams (PMF) have increasingly attracted researchers to
explore their characteristics and behaviors for various
applications. Wang et al. [24] investigated static and
buckling behaviors of 3D PMF plates within the context of
a refined HSDT, and Galerkin method. Pham et al. [25]
examined bending, free vibration, and forced vibration
transient responses of PMF plate by using the IGA and a
refined HSDT. Tu et al. [26] analyzed the buckling and
post-buckling responses of thin PMF plates using Galer-
kin’s analytical solution and CPT. Phung-Van et al. [27]
studied behaviors of PMF nanoplates using the IGA. Sobhy
et al. [28] investigated the phase velocity of the waves and
wave frequency of PMF nanoplates using a refined HSDT
and wave propagation analysis. Pham et al. [25] analyzed
PMF microplates using a refined HSDT, MST and IGA. Le
et al. [29] utilized the MCT and IGA to investigate the
linear bending and geometrically nonlinear responses of
PMF microplates.

In addition to plate models and size-dependent theories,
computational methods have also significantly impacted
the behavior of porous structures, which can be categorised
into numerical and analytical methods. Among these, the
Ritz approach is an efficient technique that enables the
approximation of the solution field with high accuracy and
simplicity in formulation and programming. Initially
introduced by Walter Ritz [30], this method was designed
to analyse the free vibrations of structures. Since then,
several researchers have used this method to investigate the
structural responses of beams, plates, and shells. It is
important to note that the accuracy, numerical stability, and
convergence rates of the Ritz method heavily rely on the
choice of approximation functions. Therefore, careful
selection of these functions is crucial to ensure both
accuracy and favourable numerical properties. The func-
tions must be linearly independent, complete, and com-
patible with the geometric boundary conditions (BCs) [31].
The Ritz method also faces challenges when applied to
systems with irregular geometries. In order to overcome
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this adverse, the pb2-Ritz method [32, 33] with a combi-
nation of two-dimensional polynomial function and basic
boundary function, or Ritz method with mapping technique
[34, 35] could solve different shaped plate problems. A
brief literature review shows that polynomial methods can
be categorised into two typical types: orthogonal polyno-
mials (OP) and non-orthogonal polynomials (NOP). For the
OP shape function, Chebyshev’s polynomial [36] is com-
monly used for analysis of composite structures due to its
convergence rate and numerical robustness [37-39] and it
can be formulated using the Gram-Schmidt procedure
[40—43]. In practice, the approximation functions of Ritz
method can also be expressed as a series of NOP [44, 45].
This particular set does not exhibit orthogonality, resulting
in the loss of certain computational benefits. However, the
primary advantage of these functions lies in their ability to
simplify the generation process compared to orthogonal
counterparts. The evaluation of integrals is significantly
easier than that involving their orthogonal equivalents.
Moreover, it is worth noting that the shape functions should
be selected to satisfy the boundary conditions (BCs)
[46—48], which have been found to be efficient in terms of
convergence rate. Alternatively, the penalty function
method can be used to incorporate the BCs; however, it
leads to an increase in the size of the mass and stiffness
matrices, thereby raising computational costs. A literature
review reveals that although OP offer significant advan-
tages in numerical computations, there remains a gap in
their development for the analysis of PMF microplates. The
novelty of this paper lies in the development and applica-
tion of the Hermite—Ritz and Laguerre-Ritz methods in
combination with the unified HSDT and MCT for the free
vibration, buckling, and transient analysis of PMF micro-
plates. This approach offers a significant advancement by
achieving faster convergence, enhanced numerical stabil-
ity, and reduced computational complexity through the
innovative use of orthogonal polynomials. The recursive
properties of these polynomials facilitate the development
of efficient algorithms, while their algebraic simplicity
ensures ease of implementation without compromising
accuracy. To the best of the authors’ knowledge, this is the
first study to comprehensively investigate such analyses
using this unique combination of methodologies. This
paper addresses a critical gap in the literature on PMF
microplate behavior, and this is the primary motivation
behind the study.

This paper proposes two new computational algorithms,
namely Ritz—Hermite and Ritz-Laguerre, in conjunction
with HSDT and MCT for the analysis of PMF microplates.
The characteristic equations are derived using Hamilton’s
principle. The study investigates the responses of PMF
microplates under various dynamic loads, including
explosive blasts, triangular, and rectangular patterns, using

Newmark’s technique. The influence of the MLSP,
damping factor, side-to-thickness ratio, porosity coeffi-
cient, porosity distribution, and BCs on the vibration,
buckling, and transient responses of the PMF microplates is
examined.

Theoretical Formulation

Porous Metal Foam Material (PMF)

Consider PMF rectangular microplate, which has three
types of porosity distributions, with the thickness 2 and

sides a x b as seen in Fig. 1. The effective material prop-
erties are expressed via porosity parameter § and maximum
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Fig. 1 Three types of PMF microplates
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Young’s modulus Ep,x as well as the corresponding coef-
ficients f3,, and p,,,, of mass density as follows [49]:
e Distribution of uniform porosity (UD)

,O(Z) = Pmax (1 - ﬁ!)) (la)
E(z) = Emax(1 — fpv) (1b)

e Distribution of asymmetric porosity (AD)

P(2) = Pmax [1 = P cos (% + g)} (2a)
E(2) = Enx |1 — fcos (;—2 +7)] (2b)

e Distribution of symmetric porosity (SD)

p(2) = s (1= Bcos(75) ) (3a)
E(z) = Emax (1 — fcos (%)) (3b)

where f and f,, denote the porosity parameters of Young’s
modulus and mass density, which are given by:

E. .
[)’zl—Emm,O<ﬁ<l (4a)

max

max

Bu=1-+/1-8 (4c)

where Enax, Emin and o,y Pmin are maximum/minimum
values of Young’s modulus and mass density, respectively.
It is noted that the material characteristics for UD remain
constant in the thickness direction and depend only on f.
Thereafter, the coefficient v in Eq. (1) is written as follows:

e = 5)

Unified High-Order Shear Deformation Theory
(HSDT) of Porous Metal Foam Microplate

This paper proposes a novel unified shear deformation
theory [50] based on the fundamental equations of elas-
ticity, featuring fewer unknown variables. The displace-
ment field is expressed in a unified form, allowing for the
recovery of several shear deformation plate theories,
including zeroth-order, third-order, various HSDTs, and
refined four-unknown HSDTs. The Carrera Unified For-
mulation (CUF), proposed by Carrera et al. [51, 52], pro-
vides a comprehensive framework that unifies various
structural theories, offering high flexibility and accuracy in

@ Springer ¢

modeling complex structures. The proposed theory can be
viewed as a simplified model that can be derived from the
CUF. For the analysis of PMF microplates, the kinematic
of HSDT [50] is written by:

ll(Xl,)C2,X3) = (HS"P(X3))U3(X17)C2) + (HS\P()Q) — )C3)l.lz

+u1(-x17-x2)
= Yo (x3)us(xp,x2) + Yy (x3)up + uy (x1,x2)
u u(l) “(3)1( )
where u=qu ), u = M% ) Uy = “(3),2 ’
@1 u3 U3 0
u3 =< @, p; u;(j=1,2,3) are displacements in x;—,
0

x,— and x3— directions, respectively; u?,ug and ug are
membrane and transverse displacements at neutral plane;
@, ¢, are rotations at neutral plane with respect to the x; —
and xp— axis, respectively; H® is the transverse shear
stiffness;

_ 204, [T s
T(“)‘/o Eo) 7 )y alw)

where f(x3) is a higher-order shear function with

dX3

f3 (x3 = :I:g) = 0; the comma in index indicates the dif-

ferentiation of variable that follows. It is noted that the
accuracy of HSDT depends on the selection of shear
functions [53-56].

Modified Couple Stress Theory (MCT)

Hamilton’s principle is applied to compute the variation of
total potential energy:

15}
oIl = / (5HSE + oIy — 5HKE)dl‘ =0 (7)
n

where Ilgg, [Ty and Iz are the kinetic energy, work done
by external force and strain energy, respectively.

Moreover, following the MCT [5], the strain energy of
the microplate is defined as:

ST — / (60 + moy)dA (8)

A

where ¢; and y;, respectively, are strain and symmetric
rotation gradient components; o; are Cauchy’s stress
component; my; are the high-order stresses connected to the
strain gradient y;;.

The components of the strain tensor are given by:

1
6 = 5 (5 + i) ©)
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By substituting Eq. (6) into Eq. (9), the strain field is
written under compact form as follows:

el = e &2 712 Vi3 V23l (10a)
S<i> = Y3(X3)8(3) + YQ(X3)8(2) + Y] (X3)S(l) + 8<0) (IOb)
where Y3(x3) = f:—(&?; H°.

Moreover, the symmetric rotation gradient tensor y is
written as:

1 — —
Xijzi(gj,i+9i,/) (11)

where 0; is calculated using the displacements u; as shown
in:

01 U3 — Uz
0=4 0, p = T3 a1 T s
05 Upp — Ui

X Uy — Yi3u3, — Ya30,
=5 —u3 + Y38 + Ya30,
“(2),1 —ul )+ Y2 (02 — @12)

Substituting Eq. (12) into Eq. (11), the rotation gradi-
ents are represented as follows:

2 =Y2x® + o3 + Yiasn® + + a5

(13)
+ Yy 4 7

The strain components of the PMF microplates are
described in Appendix 1. The relationship between the
conventional stress and strain is illustrated as:

6=Q. (14)
where the stiffness Q, is represented by:

Onn O O 0 0
On 0On O 0 0
Q=10 0 Qs O O (15)
0 0 0 05 0
0 0 0 0 OQu

and Qa4 = 055 = Qo6 = L = %,

Qn=0n= 112<_—)?,2),Q]2 = "f_(fé), o, = 2ul* and [ is material

length scale parameter (MLSP) which is used to measure
the size effect.

According to the MCT [5], the higher-order stress
components are as follows:

iy ‘100 0 0 o™
Moy 01 0 0 0 0f]#*
m— np :2#[2 00 1 0 0 O X12
ms3 00 01 0 O x33
o3 000010 s

mi 0000 0 1]
X13

= a,Isx6

(16)
Substituting Eqgs. (16) and (14) into Eq. (8), the strain
energy ollgg could be expressed in the following way:
ollsg :/ (mdy, + 6dg)dA
A
_ / (N5 4 NP os + NDsel!) 4 N0
J ; ; ; ,
+ N5y + NW oy @ + N sy @)
Ny + NOoy ) 4 N;°>5x<°>} dA
(17)
where the stress resultants are supplied by:
h/2
(N, N&NONO) = / (Y5, Y2, Y1, 1)odx;  (18a)

—h/2

(N<5> N NG N N N<°>)

o N N Ny 0Ny
h/2

= / (Y2, Y233, Y133, Y23, Y13, 1) mdxs
—h/2

(18b)

The stress results could be calculated using strains and
its gradients as shown in Appendix 2. The variation of
work produced by membrane compressive loads is pre-
sented as:

oMy = — / N° (ug,laug{l + ug’,zaugz)dA (19)
A

where N = N = N0 N9, = 0.
The variation of kinetic energy 6Ilgg is calculated by:

D @ Springer
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ollgg =

N —

/ p (18t + 1iy iy + 1i5Stiz)dV
\4

l\)l’—‘

/{12 “215”31+”225”32)
A

+ Ky (0,00, + ¢20¢0,)1o (u oul + udou + u35u3)

+ 1 ( 05u3 L+ u3 15u1 + u25u32 + iy 25u2>

+ 1 (110, + ¢y 3] + 130, + @01

02 (18,100, + 410, + 13,00, + 5,018, ) | dA
(20)

where Iy, 11,1>,J1,J>, K, are the mass components descri-
bed as:

h/2

(Kz,J2,J1, 10,11, 1) = / (Y3, Y12, Yo, YT, Xy, 1) pdxs
2

(21)

Ritz Formulation

Based on the Ritz approach and variational formulation, a
series of approximation functions and associated values
can be utilized to represent the membrane and transverse
displacements ((pl7 ®y, ul,uz, u3) of the PMF microplates,

as follows:
0
(@1 (xl y X2, t>7 uj (X],)Cz, t))
np ny
22a
—Rxl,xz ZZ x,j I/l]lj (xg)T,-_rl(xl) ( )
i=1 j=
0
((pZ(xl y X2, t)a u2(xlax27 t))
np ny
22b
= R(x1, ZZ Vi (1), (1)) Fia (x2) T (1) (220)
i=1 j=
n np
W, x0,1) = R(xi,x2) Y > us(F(x)Ti(xr1)  (22c)
i=1 j=1
Table 1 Admissible functions for various BCs
BCs Solutions Ti(x1) Fj(x2)
SSSS Hermite xi(a — x1)He; X2(b — x;)He,
Laguerre xi(a—x1)L; x2(b —x2)L;
SCSsC Hermite x;(a—x )zHej x,(b— xz)QHej
Laguerre x(a— xl)zLj x,(b— xz)zLj
Ccccc Hermite Ba— xl)zHej (b — xz)zHe,
Lagere  ga-nfl, A6

&) Springer D

where  x;j, yjj, uzjj, Ui, u1;; are the unknown variables;
R(x1,x2) = R1(x1)R2(x2) is the admissible function that
satisfies BCs (Table 1). It is noted that two shape functions
in the x;— and x,— directions, namely 7;(x;) and Fj(x,),
are sufficient to determine five unknowns variables. In this
study, the Hermite and Laguerre polynomials are used to
develop Ritz solutions, namely Hermite-Ritz, Laguerre—
Ritz.

The Hermite polynomials are characterized by the fol-
lowing recursion formula:

{Heo(x) =1, Hej(x)=2x,

He,(x) =2x He,_1(x) —2(n — 1)He,_»(x) (23)

where x denotes the coordinate x; or x,. It is noted that the
Hermite polynomials satisfy the normalization as follows:

/ (He(x))zefxzdx =2"\/nn! (24)
—00

Moreover, the hypergeometric functions define the
generalized Laguerre function as follows:

L(n,a,x) = (njl_a>1F1(—n;a+1;x) (25)

where these functions return orthogonal generalized
Laguerre polynomials for nonnegative integer values of n:

f1,f2) = /000 e XU (x)fa (x)dx (26)

Furthermore, generalized Laguerre polynomials fulfill
this normalization:

0 if n#m

Linax) Limav)= Datnt) .~

n!

(27)

The first five Hermite polynomials, Laguerre polyno-
mials are displayed in Fig. 2. It is noted that the approxi-
mation functions Fj(x,) and T;(x;) are combined with the
admissible functions to fulfill the following clamped—
clamped and simply-supported BCs:

e Clamped (C): ¢, = ¢, = u) =u) = u =0atx, =0,b

and x; =0,a
e Simply-supported (S): ¢, = ud =u} =

and wzzug:ugzoatxlzo,a.

0 at x,=0,b

The following BCs result from the combination of fully
clamped and simply-supported BCs on the borders of the
PMF microplates. The numerical examples will hence
include three representative BCs, namely SSSS, SCSC, and
CCcCC.

By using Lagrange’s equations %_%% 0, substi-

tuting Eq. (22) into Egs. (20), (19) and (17) and then the
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(b) The first five Laguerre polynomials

Fig. 2 The first five polynomials of approximation

subsequent results into Eq. (7), the characteristic equations
of motion are obtained as follows:

(K — N°K¢f)d + Cd + M&=F (1) (28)

where d=[u u, u X y}T is the displacement
vector; the stiffness matrix K = K* 4+ K% is composed of
the stiffness matrix of the strains K° and the stiffness
matrix of the symmetric rotation gradients K*; K¢ is the
geometric stiffness matrix; M is the mass matrix;
C =2{wM is the damping matrix; F(¢) is the external load
vector. For the transient vibration analysis, a sinusoidal
transverse dynamic load is defined as follows [57]:

. (TX1\ . (TX)
¥ =q0sin () sin ()
() =qo sin ) sin(~,

e~ 7a(t) Explosive blast pulse

1—t/ty 0<1<p )

Triangular pulse
0 t>1
1 0<r<yy

Rectangular pulse
0 t>1

(29)

where 7, = 330 s7! is the decay coefficient of the wave-
form; go = 16 is the load intensity.

The components of stiffness and mass matrix are
described in further in detail as follows:

xll %12 x13 14 1S
K K K K K
Ty k12 %22 x23 %24 %25
K K K K K

Kkz TKM3 TKX23 K7L33 KK34 KK}S WlthK={;{,5}
TK?.M TKX24 TKX34 KXM KK45
TKXIS TKXS TKXSS TK7~45 K?LSS
(30a)
00 0 00
00 0 00
KE=|0 0 K 0 0| with K5,
Y (30b)
00 0 00
00 0 00
= H'SY + HY'S}/

where the stiffness matrix components, K° and K*, are
described in Appendix 3. The mass matrix’s constituents M
are provided by:

1 _ 1100 3713 1100 3 r14
Mijkl _IOsz jl ,M ijkl _IlHik jil ’Mijkl

22 00 23 00 25
Mijkl - IOsz S]l ’Mijkl - IlHtk S_]l ’Mijkl

=Ji Hilkl le
= JH'S)/
M3 = ToHLSY + b (!X + HPS) ).

szki DH! le7Mykl
Mykl = KH}! JZO7Mykl

LHYS)!
K,HP'S)!
(31)

It is noted that the components of the stiffness and mass
matrices will be calculated using numerical integration via
adaptive Simpson’s quadrature [58]. Based on Eq. (28), the
critical buckling loads N of the PMF microplate can be
obtained by disregarding the mass inertia components,
damping ratio and solving the characteristic equation
(K — N°K#)d = 0. For free vibration analysis, it is sup-
posed that N’ =0 and d(¢) = de’, where i* = —1 rep-
resents the imaginary unit, and @ denotes the natural
frequency of the PMF microplate. By solving the equation

@ Springer
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(K — w*M)d = 0, the natural frequencies will be deter-
mined. For transient analysis, it is assumed that NO =0,
and therefore the transient responses can be obtained from
Eq. (28) by using the Newmark’s method [59], as shown:

di.1 = d; + Ard; + (0.5 — n)Ad; + nd;y AP (32a)
di+1 = d,‘ + (1 — V)Al‘d, + VAt&i+| (32b)
Substituting Eq. (32) into Eq. (28) leads to:

[KnA? 4 CyAt + M]d;y = Fiyy — C[d; + (1 — y)Ard;]
— K[d, + Ald,‘ + (05

— n)Ad))
(33a)
R& =1, (33b)
where
K = [KnAr + CyAt + M| (34a)

f'i+1 =F - C[d, + (1 - )))Atd,] - K[d, + Aldi + (05
— 1’[)Al2d,]
(34b)
with At = 0.01, 5 :%,y :%.

Numerical Results

In this part, numerical examples are performed to explore
free vibration, buckling, and transient analysis of PMF
microplates with different BCs and three porosity distri-

butions (UD, AD, SD) in which the shear function ¥(x3) =

3
cot™! (ﬁ) —% [60] is used. The PMF microplates are

X3
designed to be made of metal foam materials whose
characteristics are followed:

o MAT 1 [25]:Epy =200 GPa, p,. = 7850 kg/m.?,
Vimax = 0.33

e MAT 2 [61]
m.3 v = 0.23

Emsx =90 GPa, p,,, = 2700 kg/

The numerical results obtained in this work is performed
in an Intel® Core™ i7 at 2.8 GHz, 8 GB of RAM. For
simplicity purpose, the numerical examples utilize the
following normalized response parameters:

-~ Ncr 2
® = 100wh, /%; N, — e

h3Emax
Example 1 To evaluate the convergence and efficiency of
the current computational method, this example compares
the convergence speed and stability of the proposed Her-
mite—Ritz and Laguerre—Ritz solutions with those obtained
from other shape functions in the Ritz method. The

(35)

@ Springer L -

following approximation functions will be used in Eq. (22)
for the computations:

a. Chebyshev polynomials [36]:

The Chebyshev polynomials are characterized by the
following recursion formula:

{Fo(XQ) = 1, Fl(XQ) = X2,

Fj(x2) = 2x2Fj-1(x2) — Fj—2(x2) (36)

where —1 <x; <1. It is noted that the Chebyshev poly-
nomials satisfy the normalization as follows:

| 0 if i4)
/F,-(xz)F;(xZ)dx _Jn if i=j=0 (37)
EANRVAISE:] S i i=j#0

b. Static Beam Functions (SBF) [62]:

Fj(x;) = Aj + Bix, + Cjx3 + Djx; + sin (J%) (38)

Wlth Aj = O, Bj = —
_r((=1)+1)
=

c. Non-Orthogonal Polynomials (NOP) [63]:

Fi(x) = (b—x)™5" (39)
d. Product of Trigonometric Functions (PTF) [64]:
Fj(x;) = sin (@) sin (152 (40)
b b
e. Characteristic Functions (CF) [65]:
Fj(x2) = sinoyx, — sinh oy
— ¢;(cos ax, — coshajxy) (41)
. __ sinogb—sinhab . (j+0.5)%
with ¢j ~ cosayb—coshoyb? T b

It is noted that the shape functions T;(x;) in the x;—
direction are defined in a similar way by replacing in
Egs. (36)-(41) the coordinate x, by x, the length b by the
width a.

Moreover, for the purpose of investigating the conver-
gence of approximation functions, the reference distance is
defined as follows:

df = wiy1 — (42)

where ; and w;;; are the fundamental frequencies at
number of series n; and n;4.

In order to evaluate the convergence of the proposed
Ritz solutions, Table 2 and Fig. 3 compare the conver-
gence speed of fundamental frequencies of the PMF CCCC
plates with side-to-thickness ratio a/h = 10 and porous
parameter § = 0.3. It is worthy to noticing that the results
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Table 2 Comparison of the Solution

Number of series n = n; = ny

convergence speed of the series
solution for normalized 2 3

6 8 9 10 15 16 17

fundamental frequencies of
PMF CCCC plates (a/h = 10
and f=0.3)

SBF 11.765
NOP 9.455
PTF 9.784
CF 9.560
Chebyshev 9.649
Hermite 9.649
9.534

9.520

11.27
9.44
9.486
9.545
9.382
9.382

Laguerre 9.364

IGA [25]

10.681

10.125
9.373
9.400
9.467
9.383
9.382
9.364

9.905
9.362
9.362
9.402
9.381
9.381
9.364

9.858
9.363
9.364
9.388
9.384
9.383
9.364

9.772
9.362
9.362
9.388
9.383
9.384
9.364

9.4444
9.364
9.364
9.388
9.383
9.381
9.364

9.444
9.362
9.363
9.388
9.382
9.382
9.364

9.444
9.362
9.362
9.388
9.382
9.382
9.364

9.382
9.401
9.503
9.382
9.382
9.364

—&— Chebyshev
Hermite
—+—Laguerre
=i NOP
s PTE
CF

11
B 105
10

9.5

B e Lttt ¥

2 4 6 8 10 12
Number of series

(a) Convergence speed

3000

—&— Chebyshev ]

2500 CF

"""" - PTF

---=-NOP

—+—Laguerre o
Hermite /

Elapsed time
-t —_ N
o (€)] o
o o o
o o o
a,
Y

500 o
04— ¥
2 4 6 8 10 12

Number of series

(b)

Fig. 3 Comparison of the convergence speed and computational cost
of normalized fundamental frequencies of PMF CCCC plates with
respect to the number of series (a/h = 10 and f§ = 0.3)

Computational cost

are computed with seven types of shape functions

(Hermite—Ritz, Laguerre-Ritz, Chebyshev—Ritz, SBF,
NOP, CF and PTF), the number of series in x,— and x;—
direction are supposed to be similar, i.e. n; = ny = n. The
tabular data and graph illustrate that the overall trend of the
solutions is a decrease as the number of series increases,
eventually reaching a converged value, after which the
graphs stabilize. In comparison, it is observed that the
responses derived from the SBF function require the largest
number of series n = 15, while the proposed Hermite,
Laguerre, and Chebyshev orthogonal polynomials achieve
convergence with the lowest number of series n = 3. The
responses from NOP and PTF and CF functions are obvi-
ously converged at n = 8 and n = 9, respectively. Figure 3
shows the elapsed time required to compute the natural
frequencies for various shape functions, where the com-
putational cost logically increases with the number of
series. Consequently, the proposed model demonstrates
significantly faster convergence compared to other meth-
ods like SBF, NOP, PTF, and CF, resulting in more effi-
cient numerical computations. Additionally, the use of
orthogonal polynomials enhances numerical efficiency by
improving stability and reducing computational complex-
ity, especially when compared to non-orthogonal polyno-
mials. These polynomials also possess algebraic simplicity,
making them easier to implement in numerical models
without compromising accuracy. Notably, the performance
of the proposed Hermite-Ritz and Laguerre—Ritz methods
is comparable to that of the well-known Chebyshev poly-
nomials, which are widely recognised for their accuracy
and efficiency, making the proposed model a highly com-
petitive and promising approach for enhancing the Ritz
method.

In order to examine the convergence of buckling and
free vibration responses of PMF microplates with
a/h =10, f=0.1 and h/l =1. The results in Table 3
demonstrate rapid convergence of the proposed solution
across all cases, with a convergence point observed at
n = 3. This value will be used in the following numerical
examples. The current Hermite—Ritz and Laguerre—Ritz
solutions show greater efficiency in terms of both

@ Springer
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Table 3 Convergence study of

. . . BCs
the series solution of Hermite

Solution

Number of series n = n; = ny

and Laguerre polynomials for 1
UD CCCC microplates with

2 3 4 5 6 7

different BCs (MAT 1,
a/h=10, f=0.1, h/l = 1)

Normalized fundamental frequency

SSSS Hermite 15.6713
Laguerre 15.6197
SCSC Hermite 22.2541
Laguerre ~ 22.1756
CCCC  Hermite 29.6893
Laguerre 29.6589

Normalized critical buckling load for biaxial compression

SSSS Hermite 12.5538
Laguerre 12.5497
SCSC Hermite 19.9021
Laguerre 19.7828
CCCC  Hermite 32.9265
Laguerre 32.9873

13.6135 13.6004 13.6005 13.6016 13.6008 13.6005
13.5862 13.5604 13.5603 13.5604 13.5605 13.5604
20.2237  20.2040  20.2040  20.2042  20.2043  20.2041
20.0831 20.0677  20.0679  20.0677  20.0678  20.0677
28.9057  28.6386  28.6385  28.6388  28.6387  28.6386
28.8648  28.6135  28.6137  28.6136  28.6135  28.6135
10.7729 9.1169 9.1170 9.1169 9.1171 9.1170
10.7654 9.1132 9.1133 9.1131 9.1132 9.1132
18.2037 17.3403 17.3426 17.3412 17.3408 17.3404
18.1026 17.2474 17.2426  27.2424  27.2425 17.2424
31.8104  31.7498  31.7498  31.7499  31.7499  31.7498
31.8926  31.8486  31.8487  31.8488  31.8486  31.8486

convergence and computational time compared to earlier
shape functions [36, 62-65].

Example 2 In this example, free vibration behaviors of the
square PMF microplates with various BCs such as SSSS,
CCCC and SCSC are analysed. The results of the present
model in Table 4 are compared with those from previous
study [61] for PMF SSSS microplate with f = 0.1, 0.3, 0.5,
I/h=0, 0.2, 04, 0.6, 0.8, a/h = 10, and three porosity
distributions (UD, AD, SD) using the MAT2. There are
good agreements between the two models for all cases.
Moreover, the fundamental frequencies for PMF micro-
plate with various configurations are reported in Tables 5, 6
and 7. The obtained results are compared with those from
the earlier work of Pham et al. [25] for PMF macroplates
without the size effects, i.e. 2/l = co. It can be seen from
Tables 5 and 6 that there are good agreements between the
two models for all cases. It is also observed from these
tables that the results vary with the porosity distribution in
which the largest and smallest frequencies correspond to
SD and UD. Some new results for microplates are given in
Tables 5, 6 and 7 can be used for the benchmark in future
research (Fig. 4).

Figures 5 and 6 illustrate the effect of the porosity
coefficients, porosity distribution, size effects and BCs on
the vibrational characteristics of square PMF microplates.
As observed, the frequencies decrease with increasing
porosity coefficients and thickness-to- MLSP ratios for all
BCs and porosity contributions. The curves become flat
when the ratio of &/l reaches to 20, indicating that size
effects become insignificant beyond this point. Notably, the
size effect is most pronounced at 4/l = 1 and decreases
sharply as the ratio increases from 4/l =1 to h/I = 10.

@ Springer

Example 3 1In this example, buckling behaviors of the
square PMF microplates (MAT1) with various configura-
tions are considered and their buckling loads are given in
Tables 8, 9, 10 and 11. It is noted that the obtained results
in Tables 8 and 9 for PMF SSSS microplates under biaxial

compression (N§O>, éo),Nf? = 1,1,0) and uniaxial

compression (Nfo),Néo),Nfg> = 1,070) are verified with

those derived from Pham et al. [25] without the size effects
(h/l = oc0). It is observed that two models are in good
agreements for different cases. New results with different
thickness-to-MLSP ratios and BCs are provided in
Tables 8, 9, 10 and 11 for future benchmarks.

Moreover, Fig. 7 displays the normalized critical
buckling loads of PMF SD microplates with respect to the
thickness-to-MLSP ratio. It is interesting to observe that
the porosity does not significantly impact on the size effect,
when the thickness-to-MLSP ratio increases, the curves of
critical buckling loads decrease suddenly from #4/1<10
and then become stable from h/l>20. As expected, the
normalized critical buckling loads slightly decrease with an
increase in the porous parameter due to the reduction in
stiffness. When comparing porosity distribution types, it is
observed that the UD requires a lower critical buckling
load than the SD one, similar to the trend seen in free
vibration responses. This confirms that symmetric porosity
distribution provides greater stiffness advantages over the
uniform arrangement.

Example 4 This example focuses on the responses of PMF
microplates under three types of dynamic load, namely
explosive blast load, rectangular load, and triangular load.
Since there is no available results of PMF microplates
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Table 4 Normalized

fundamental frequencies of Type distribution b Theory L
square PMF SSSS microplates 0 0.2 0.4 0.6 0.8
(MAT 2,a/h = 10)
UD 0.1 Ritz—Hermite 5.5729 6.0854 7.4391 9.2658 11.3390
Ritz-Laguerre 5.5647 6.0886 7.4423 9.2689 11.3423
IGA [61] 5.5753 6.0852 7.4069 9.1964 11.2321
0.3 Ritz—Hermite 5.3231 5.8425 7.1786 8.9737 11.0054
Ritz-Laguerre 5.3262 5.8456 7.1816 8.9769 11.0087
IGA [61] 5.3658 5.8566 7.1287 8.8509 10.8101
0.5 Ritz—Hermite 5.0481 5.5585 6.8658 8.6144 10.5878
Ritz—Laguerre 5.0511 5.5614 6.8688 8.6175 10.5911
IGA [61] 5.1129 5.5806 6.7927 8.4337 10.3006
SD 0.1 Ritz—Hermite 5.6465 6.1634 7.5032 9.3176 11.3817
Ritz-Laguerre 5.6499 6.1666 7.5066 9.3209 11.3851
IGA [61] 5.6517 6.1564 7.4679 9.2483 11.2774
0.3 Ritz—Hermite 5.6125 6.1092 7.4020 9.1598 11.1650
Ritz-Laguerre 5.6158 6.1126 7.4055 9.1634 11.1690
IGA [61] 5.6300 6.1062 7.3500 9.0477 10.9906
0.5 Ritz—Hermite 5.6119 6.0834 7.3177 9.0066 10.9415
Ritz-Laguerre 5.6151 6.0868 7.3214 9.0108 10.9462
IGA [61] 5.6364 6.0839 7.2570 8.8666 10.7168
AD 0.1 Ritz—Hermite 5.5777 6.1005 7.4519 9.2765 11.3484
Ritz—Laguerre 5.5810 6.1037 7.4550 9.2798 11.3518
IGA [61] 5.5896 6.0988 7.4192 9.2076 11.2428
0.3 Ritz—Hermite 5.3696 5.8871 7.2205 9.0146 11.0472
Ritz—Laguerre 5.3727 5.8903 7.2237 9.0178 11.0507
IGA [61] 5.4055 5.8971 7.1717 8.8985 10.8638
0.5 Ritz—Hermite 5.1129 5.6269 6.9441 8.7073 10.6982
Ritz-Laguerre 5.1159 5.6298 6.9472 8.7106 10.7017
IGA [61] 5.1658 5.6431 6.8785 8.5487 10.4470

under dynamic loads, the verification is carried for PMF
plates. It can be seen in Fig. 8 that the present results agree
well with those from the previous study published by Pham
et al. [25] for PMF SSSS plates under triangular load with
a/h=10and f=0.1.

It is noted that since the dynamic load refers to an
intensely high load that occurs for a relatively short period
of time, hence the time step of Ar = 0.01 seconds is
chosen. Moreover, in order to examine the effects of
porosity coefficient on dynamic responses of PMF micro-
plates, the normalized dynamic deflections w = w/(10004)
are calculated for three types of porosity distribution (UD,
SD, AD) with a/h = 10. Figure 9 shows the time-depen-
dent variation of nonlinear defections of PMF UD SSSS
microplates with f = 0.1, 0.2, 0.3 and 0.4 under explosive
blast load. It is observed that for 2/ = 10 and { = 0.05, an
increase in the porosity coefficient results in a reduction in
the microplate’s stiffness, which leads to an increase in
transverse displacement. Moreover, the nonlinear dis-
placement response of PMF microplates increases as the

ratio /I decreases and reaches its maximum at i/l = 1.
Figure 10 illustrates the influence of the damping factor on
the nonlinear dynamic characteristics of UD microplates
under explosive blast load. To quantify this, seven different
damping coefficient values { = 0%, 1%, 2%, 3%, 4%, 6%
and 10% are used and the results are computed with i/l =
5 and 1. It is noted that a damping coefficient of { = 0%
implies the absence of structural damping in the equation
of motion, the transverse displacements of PMF micro-
plates are reported for porosity coefficient = 0.2. As
depicted in Fig. 10, the damping coefficient profoundly
affects the nonlinear dynamic behavior of the structure.
Specifically, disregarding damping ({ = 0%) leads to a
sustained deflection amplitude over time post-load
removal. Conversely, increasing the damping parameter
substantially mitigates nonlinear dynamic responses.
Moreover, although higher damping ratios effectively
diminish deflection amplitudes, they have only a marginal
impact on motion periods. This underscores the substantial
role of structural damping in dissipating vibrational energy.
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Table 5 Normalized

fundamental frequencies of Type distribution B Theory hl
square PMF SSSS microplates 00 10 5 2 1
(MAT 1, a/h = 10)
UD 0.1 Ritz—Hermite 5.7950 5.9242 6.2959 8.4518 13.6004
Ritz-Laguerre 5.7850 5.9136 6.2836 8.4305 13.5604
IGA [25] 57276 - - - -
0.2 Ritz—Hermite 5.6551 5.7849 6.1579 8.3123 13.4323
Ritz-Laguerre 5.6453 5.7745 6.1458 8.2914 13.3928
IGA [25] 5.6244 - - - -
0.3 Ritz—Hermite 5.5103 5.6404 6.0140 8.1634 13.2463
Ritz-Laguerre 5.5007 5.6302 6.0021 8.1428 13.2073
IGA [25] 5.5125 - - - -
0.4 Ritz—Hermite 5.3583 5.4886 5.8620 8.0019 13.0374
Ritz-Laguerre 5.3490 5.4786 5.8504 7.9815 12.9990
SD 0.1 Ritz—Hermite 5.8931 6.0203 6.3864 8.5195 13.6430
Ritz-Laguerre 5.8830 6.0095 6.3740 8.4983 13.6031
IGA [25] 5.8052 - - - -
0.2 Ritz—Hermite 5.8614 5.9868 6.3482 8.4562 13.5258
Ritz-Laguerre 5.8513 5.9761 6.3359 8.4351 13.4864
IGA [25] 5.7905 - - - -
0.3 Ritz—Hermite 5.8373 5.9607 6.3164 8.3945 13.4030
Ritz-Laguerre 5.8273 5.9501 6.3042 8.3737 13.3641
IGA [25] 5.7806 - - - -
0.4 Ritz—Hermite 5.8227 5.9437 6.2927 8.3360 13.2752
Ritz—Laguerre 5.8127 5.9332 6.2806 8.3154 13.2369
AD 0.1 Ritz—Hermite 5.8142 5.9431 6.3138 8.4655 13.6100
Ritz-Laguerre 5.8042 5.9324 6.3014 8.4443 13.5701
IGA [25] 57422 — - - -
0.2 Ritz—Hermite 5.6935 5.8226 6.1937 8.3414 13.4558
Ritz-Laguerre 5.6836 5.8121 6.1816 8.3204 13.4163
IGA [25] 5.6527 - - - -
0.3 Ritz—Hermite 5.5665 5.6958 6.0673 8.2097 13.2901
Ritz—Laguerre 5.5568 5.6856 6.0554 8.1890 13.2511
IGA [25] 5.5529 - - - -
0.4 Ritz—Hermite 5.4297 5.5594 5.9313 8.0680 13.1114
Ritz-Laguerre 5.4203 5.5493 5.9195 8.0475 13.0729
Similar results for PMF SD microplates under explosive Conclusions

blast load are also observed in Fig. 11. Finally, the influ-
ence of two types of dynamic load (rectangular and trian-
gular) on the nonlinear deflections of PMF AD microplates
is shown in Figs. 12 and 13. Various porosity parameters
and damping ratios, specifically f = 0.1, 0.3, 0.5 and 0.6,
and { = 1%, 3%, 5%, and 7%, are employed while main-
taining A/l of 1, 2, and 5. Increasing the damping param-
eter significantly reduces nonlinear dynamic responses,
highlighting the vital role of structural damping in mini-
mizing and controlling oscillations in engineering struc-
tures. Furthermore, although higher damping ratios
effectively reduce deflection amplitudes, their impact on
motion periods remains marginal.

@ Springer

This paper proposes two new computational algorithms,
namely Ritz—Hermite and Ritz-Laguerre, in conjunction
with HSDT and MCT for the analysis of PMF microplates.
It is based on the higher-order shear deformation theory
and the modified couple stress theory with a constant
material length scale parameter. The dynamic responses of
the microplates under an explosive blast load are deter-
mined using Newmark’s technique. The influence of the
porosity parameters, shape functions, and boundary con-
ditions on the frequency, buckling, and dynamic responses
have been examined. The proposed model demonstrates
significantly faster convergence compared to other
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Il?r?(lizrfleliglrrgzglz;icies of Type distribution b Theory bl
square PMF CCCC microplates 00 10 5 2 1
(MAT 1, a/h = 10)
UD 0.1 Ritz—Hermite 9.8398 10.2084 11.2347 16.6898 28.6386
Ritz-Laguerre 9.8202 10.1891 11.2161 16.6711 28.6135
IGA [25] 9.8918 - - - -
0.2 Ritz—Hermite 9.7059 9.9853 11.0126 16.4507 28.2951
Ritz-Laguerre 9.6968 9.9666 10.9945 16.4325 28.2804
IGA [25] 9.7136 - - - -
0.3 Ritz—Hermite 9.3824 9.7521 10.7786 16.1909 27.4022
Ritz-Laguerre 9.3639 9.7339 10.7610 16.1731 27.4001
IGA [25] 9.5202 - - - -
0.4  Ritz—Hermite 9.2358 9.5050 10.5287 15.9042 26.9741
Ritz-Laguerre 9.2178 9.4874 10.5117 15.8868 26.9688
SD 0.1 Ritz—Hermite 9.9853 10.3490 11.3634 16.7781 28.6911
Ritz-Laguerre 9.9653 10.3293 11.3444 16.7591 28.6658
IGA [25] 10.0044 - - - -
0.2  Ritz—Hermite 9.9215 10.2809 11.2836 16.6400 28.4350
Ritz-Laguerre 9.9015 10.2612 11.2647 16.6211 28.4099
IGA [25] 9.9537 - - - -
0.3 Ritz—Hermite 9.8661 10.2205 11.2095 16.4985 28.1614
Ritz-Laguerre 9.8462 10.2009 11.1906 16.4797 28.1365
IGA [25] 9.9063 - - - -
04  Ritz—Hermite 9.8213 10.1698 11.1428 16.3549 27.8712
Ritz-Laguerre 9.8013 10.1501 11.1238 16.3361 27.8465
AD 0.1 Ritz—Hermite 9.8687 10.2363 11.2605 16.7085 28.6519
Ritz-Laguerre 9.8524 10.2195 11.2422 16.6814 28.6226
IGA [25] 9.9133 - - - -
0.2  Ritz—Hermite 9.7140 10.0418 11.0654 16.4925 28.3518
Ritz-Laguerre 9.7080 10.0253 11.0474 16.4660 28.3035
IGA [25] 9.7558 - = N -
0.3 Ritz—Hermite 9.4686 9.8365 10.8590 16.2617 27.9877
Ritz-Laguerre 9.4531 9.8205 10.8415 16.2358 27.9804
IGA [25] 9.5816 - - - -
0.4  Ritz—Hermite 9.2470 9.6151 10.6365 16.0129 27.6375
Ritz-Laguerre 9.2319 9.5994 10.6195 15.9877 27.6314

methods such as static beam functions, non-orthogonal e
polynomials, products of trigonometric functions, charac-
teristic functions, and comparable to the well-known
Chebyshev polynomials. This results in more efficient
numerical computations, making the proposed model a
highly competitive and promising approach for enhancing
the Ritz method. Some findings are followed:

The increase of the porosity coefficient and thickness-
to-MLSP ratio leads to the reduction of the stiffness,
natural frequencies and critical buckling loads of the
porous metal foam microplates.

Among the porosity arrangements, the symmetric
porosity distribution reports a largest stiffness for
porous material foam microplates.

The size effects are significant when the thickness-to-
MLSP ratio is smaller than 20, the porosity does not
impact importantly on the size effects of porous metal
foam microplates.

Increasing the damping parameter significantly reduces
nonlinear dynamic responses, highlighting the vital role
of structural damping in minimizing and controlling
oscillations in engineering structures.

@ Springer



203 Page 14 of 29

Journal of Vibration Engineering & Technologies (2025)13:203

Table 7 Normalized

fundamental frequencies of Type distribution B Theory bl
square PMF SCSC microplates 00 10 5 2 1
(MAT 1, a/h = 10)
UD 0.1 Ritz—Hermite 7.6602 7.8896 8.5375 12.1058 20.2040
Ritz—Laguerre 7.6430 7.8683 8.5058 12.0348 20.0677
0.2 Ritz—Hermite 7.4797 7.7099 8.3591 11.9203 19.9663
Ritz-Laguerre 7.4625 7.6886 8.3275 11.8498 19.8314
0.3 Ritz-Hermite 7.2922 7.5229 8.1724 11.7204 19.7014
Ritz-Laguerre 7.2751 7.5016 8.1409 11.6506 19.5679
0.4 Ritz—Hermite 7.0950 7.3256 7.9741 11.5015 19.4016
Ritz—Laguerre 7.0779 7.3045 7.9429 11.4326 19.2700
SD 0.1 Ritz—Hermite 7.7830 8.0090 8.6483 12.1852 20.2524
Ritz—Laguerre 7.7662 7.9881 8.6170 12.1143 20.1162
0.2 Ritz—Hermite 7.73717 7.9609 8.5924 12.0894 20.0745
Ritz-Laguerre 7.7213 7.9404 8.5615 12.0193 19.9396
0.3 Ritz—Hermite 7.7011 7.9209 8.5430 11.9935 19.8859
Ritz—Laguerre 7.6852 7.9010 8.5128 11.9242 19.7525
0.4 Ritz—Hermite 7.6752 7.8911 8.5022 11.8989 19.6876
Ritz—Laguerre 7.6601 7.8718 8.4727 11.8306 19.5557
AD 0.1 Ritz—Hermite 7.6843 7.9132 8.5594 12.1223 20.2155
Ritz-Laguerre 7.6767 7.9007 8.5350 12.0520 20.0710
0.2 Ritz—Hermite 7.5280 7.7572 8.4037 11.9558 19.9961
Ritz-Laguerre 7.5201 7.7445 8.3791 11.8861 19.8530
0.3 Ritz—Hermite 7.3635 7.5929 8.2393 11.7786 19.7597
Ritz—Laguerre 7.3554 7.5800 8.2147 11.7094 19.6182
0.4 Ritz—Hermite 7.1861 7.4158 8.0622 11.5877 19.5045
Ritz—Laguerre 7.1778 7.4028 8.0376 11.5192 19.3646
0.5 0
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0
}'23) 0
0 0
)’g3)
£
—&— Chebyshev 1
: 2 P11
Hermite &y 0
—+— Laguerre @ - .
----NOP Y =477 (= P2t P2
...... g PTF (2) 0
713
CF 0
@)
i 723
2 4 6 8 10 12 (A.1a)

Number of series

Fig. 4 Distance of normalized fundamental frequency of PMF CCCC
plates with respect to the number of series (a/h = 10 and § = 0.3)

Appendix 1

The strain components of the PMF microplates are given

by:
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Appendix 2

The stress results could be calculated using strains and its
gradients as shown:
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Fig. 6 Variation of normalized 30
fundamental frequencies of
PMF microplates with respect to
h/l (a/h =10 and f = 0.2)
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where the PMF microplate’s stiffness components are
described as follows:

(A’, D%, B, B!, H, D*, B, AY)
h/2
— / (Y3, Y102, Yo, Y3, YT, Y1, 1)Q,dxs
—h/2

(B.2a)

(B2 B..B BB, AY) = (BB, B BL B, A7) lose

h/2

(Y2, Y233, Y133, Y23, Y13, 1)t dexedxs

—h/2
(B.2b)
(D".D!,E"E/,F}) = (D",D!,E"E/,F/)Isxs
B2
= / Y13(Yi3, Y23, Y133, Y233, Y2) 0 Do eddxs
—h/2
(B.2¢c)
(jxa iz7 Gfa ﬁf) = (‘7%’ jlv 657 ﬁf)l6><6
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= / Y23(Y2, Y233, Y133, Y2.3) ot Moxodxs
“hj2
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Appendix 3

The stiffness matrix K°® components are described as

belows:

Kii = AL ISP+ AgHS) Kigi = ALHESP + AgHGS))

K = By HESY + BLHESY + 28]

K;}j = BillezkzsﬁO + B§66Hi1kl S;ll ) K;i? = B§12H2<2Sj210 + B§66Hilkl Sjlll

K = AHIOSE + A Y] K = BLHISE + BHIIS3 + 25 HYS)

Kzﬁ? = BilekaSff + B§66Hilkl S}ll ) Kﬁj = BizzchOS,?IZ + Bi66Hilkl Sjlll

K = DiHEES) -+ D0y (HEESY -+ HRYSP) + DEHYSE + 4D ')

+ A§44H2<05;11 + AlssHy! S?IO

K;ﬁlj =D HY jl() + Dl HY jlz + 2D%geHy! S}/l + AlssHy! le

K = DIHEST) + DoHST + 200 HL'S) + AP

Kzﬁ‘/1 = H;]Hizsjolo + HigoHj! S}zl + AlssHj le

K;ﬁ = H.?l 2H3czsflo + H§66H ilkl S}ll ’ K;?j = HfzzHg)Sflz + H,fa)H ilkl Sjlll + A§44H 2(051_1[1
(C.1)

where

a b
T, T, O'F;0'F
s — L dx ”:/ Iy, (C.2)
0

ik — r 1,951 r s
) Ox} Oxj Oxh 0Ox5

with i,k =1,...ny; j,l=1,...,mp; r,s are the order of
partial derivatives.

The components of the stiffness matrix K* are expressed
as follows:



Journal of Vibration Engineering & Technologies (2025)13:203

Page 17 of 29 203

Table 8 Normalized critical
buckling loads of the square
PMF SSSS microplates under
uniaxial compression (MAT 1,
a/h = 10)

Type distribution B Theory h/l
0 10 5 2 1

UD 0.1 Ritz—Hermite 3.2565 3.4002 3.8312 6.8477 17.6179
Ritz-Laguerre 3.2576 3.4013 3.8324 6.8499 17.6228
1GA [25] 3.2625 - - - -

0.2 Ritz—Hermite 2.9905 3.1263 3.5339 6.3864 16.5708
Ritz—Laguerre 2.9915 3.1274 3.5351 6.3884 16.5753
IGA [25] 3.0337 - - - -

0.3 Ritz—Hermite 2.7274 2.8549 3.2376 5.9161 15.4791
Ritz-Laguerre 2.7282 2.8559 3.2387 5.9179 15.4833
1GA [25] 2.7992 - - - -

0.4 Ritz—Hermite 2.5627 2.7348 3.1309 5.6331 14.9277
Ritz—Laguerre 2.5679 2.7400 3.1363 5.6478 14.9290
IGA [25] 2.5578 - - - -

0.5 Ritz—Hermite 2.3250 2.4465 2.8109 5.3608 14.4634
Ritz—Laguerre 2.3297 24512 2.8157 5.3651 14.4632
IGA [25] 2.3076 - - - -

0.6 Ritz-Hermite 2.0427 2.1526 2.4824 4.7904 13.0289
Ritz-Laguerre 2.0468 2.1568 2.4867 4.7941 13.0286
IGA [25] 20459 - - - -

0.7 Ritz—Hermite 1.7507 1.8478 2.1393 4.1788 11.4591
Ritz—Laguerre 1.7542 1.8515 2.1430 4.1820 11.4588
IGA [25] 1.7679 - - - -

SD 0.1 Ritz—Hermite 3.3825 3.5275 3.9626 7.0081 17.8820
Ritz-Laguerre 3.3891 3.5345 3.9706 7.0230 17.9206
1GA [25] 3.3520 - - - -

0.2 Ritz—Hermite 3.2272 3.3645 3.7764 6.6593 16.9527
Ritz—Laguerre 3.2335 3.3712 3.7841 6.6736 16.9900
IGA [25] 32164 - - - -

0.3 Ritz—Hermite 3.0753 3.2046 3.5923 6.3057 15.9944
Ritz—Laguerre 3.0814 3.2109 3.5996 6.3194 16.0303
IGA [25] 3.0796 - - - -

0.4 Ritz-Hermite 2.9259 3.0467 3.4092 5.9459 15.0038
Ritz-Laguerre 29315 3.0526 3.4160 5.9588 15.0384
1GA [25] 2.9410 - - - -

0.5 Ritz—Hermite 2.7781 2.8901 3.2262 5.5785 14.5779
Ritz-Laguerre 2.7833 2.8957 3.2326 5.5908 14.5613
IGA [25] 2.8000 - - - -

0.6 Ritz—Hermite 2.6304 2.7332 3.0418 5.2012 13.2126
Ritz-Laguerre 2.6354 2.7385 3.0479 5.2132 13.2452
1GA [25] 2.6555 - - - -

0.7 Ritz—Hermite 2.4808 2.5741 2.8538 4.8117 11.8035
Ritz—Laguerre 2.4854 2.5789 2.8595 4.8232 11.8355
1GA [25] 2.5054 - - - -
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Table 9 Normalized critical
buckling loads of the square
PMF SSSS microplates under
biaxial compression (MAT 1,
a/h = 10)

@ Springer

Type distribution p Theory h/l

00 10 5 2 1
UD 0.1 Ritz-Hermite 1.6598 1.7344 1.9582 3.5245 9.1169
Ritz-Laguerre 1.6617 1.7362 1.9599 3.5252 9.1132

IGA [25] 1.6313 - - - -
0.2 Ritz—Hermite 1.5242 1.5948 1.8064 3.2876 8.5757
Ritz-Laguerre 1.5260 1.5965 1.8080 3.2881 8.5722

IGA [25] 1.5169 - - - -
0.3 Ritz-Hermite 1.3901 1.4564 1.6551 3.0459 8.0114
Ritz-Laguerre 1.3917 1.4580 1.6566 3.0464 8.0081

IGA [25] 1.3996 - - - -
0.4 Ritz—Hermite 1.2566 1.3182 1.5032 2.7976 7.4187
Ritz-Laguerre 1.2581 1.3197 1.5045 2.7980 7.4157

IGA [25] 1.2789 - - - -
0.5 Ritz—Hermite 1.1284 1.1791 1.3492 2.5398 6.7905
Ritz-Laguerre 1.1298 1.1804 1.3505 2.5403 6.7876

IGA [25] 1.1538 - - - -
SD 0.1 Ritz-Hermite 1.6919 1.7645 1.9821 3.5452 9.1437
Ritz-Laguerre 1.6958 1.7685 1.9866 3.5434 9.1447

IGA [25] 1.6760 - - - -
0.2 Ritz—Hermite 1.6143 1.6830 1.8890 3.3308 8.6189
Ritz-Laguerre 1.6179 1.6868 1.8933 3.3386 8.6191

IGA [25] 1.6082 - - - -
0.3 Ritz-Hermite 1.5383 1.6029 1.7968 3.1539 8.0996
Ritz-Laguerre 1.5418 1.6066 1.8010 3.1614 8.0991

IGA [25] 1.5398 - - - -
0.4 Ritz—Hermite 1.4636 1.5240 1.7053 2.9740 7.5042
Ritz-Laguerre 1.4668 1.5274 1.7091 2.9811 7.5229

IGA [25] 1.4705 - - - -
0.5 Ritz—Hermite 1.3896 1.4457 1.6138 2.7902 6.9911
Ritz-Laguerre 1.3927 1.4489 1.6174 2.7970 7.0091

IGA [25] 1.4000 - - - -
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Table 10 Normalized critical

buckling loads of the square BCs Type distribution 8 Theory h/l
PMF microplates under biaxial ) 10 5 2 1
compression with different BCs
(MAT 1, a/h = 10) SCSC  UD 0.1  Ritz—Hermite = 2.5725 2.7218 3.1684 6.2766  17.3403
Ritz-Laguerre ~ 2.5757  2.7225  3.1620 6.2673  17.2474
0.2 Ritz—Hermite = 2.3649 2.5061 2.9284 5.8675 16.3300
Ritz-Laguerre ~ 2.3678  2.5066  2.9223 5.8509  16.2477
0.3  Ritz—Hermite = 2.1591 2.2916  2.6882 5.4480  15.2726
Ritz-Laguerre  2.1616  2.2920  2.6823 54343 15.1917
0.4  Ritz—Hermite 1.9536  2.0770  2.4460 5.0145  14.0583
Ritz-Laguerre  1.9559  2.0772  2.4405 4.9939  13.9994
0.5 Ritz—Hermite 1.7467  1.8602  2.1996 4.5622 129731
Ritz-Laguerre =~ 1.7487  1.8603  2.1945 4.5549  12.8973
SD 0.1  Ritz—Hermite = 2.6373  2.7851 3.2271 6.3035  17.3759
Ritz-Laguerre  2.6396  2.7852  3.2212 6.2680 17.2914
0.2  Ritz—Hermite = 2.5144 2.6542  3.0727 5.9848  16.3627
Ritz-Laguerre  2.5166  2.6545  3.0672 5.9450  16.2989
0.3  Ritz—Hermite = 2.3934  2.5250 2.9189 5.6599 15.4188
Ritz-Laguerre ~ 2.3956  2.5253  2.9138 5.6229  15.2963
0.4  Ritz—Hermite = 2.2735 2.3966 2.7648 53274  14.4510
Ritz-Laguerre 22757 2.3971  2.7603 52934 14.3806
0.5 Ritz—Hermite  2.1539  2.2680  2.6095 49858  13.4462
Ritz-Laguerre ~ 2.1561  2.2686  2.6055 49551 13.3688
cccc  UD 0.1 Ritz—Hermite = 3.8964 4.1769 5.0167 10.8758 31.7498
Ritz-Laguerre  3.8916 4.1732  5.0160 10.8953  31.8486
0.2 Ritz—Hermite = 3.5870 3.8523 4.6465 10.1878  29.9295
Ritz-Laguerre  3.5828  3.8490 4.6460 10.2061  30.0218
0.3  Ritz—Hermite 3.2794  3.5285 4.2743 9.4783  28.0183
Ritz-Laguerre ~ 3.2755 3.5254  4.2739 9.4952  28.1040
0.4  Ritz—Hermite = 2.9713  3.2031 3.8974 8.7412  25.9982
Ritz-Laguerre ~ 2.9678  3.2004  3.8970 8.7567  26.0769
0.5 Ritz—Hermite =~ 2.6601 2.8734 3.5121 7.9681  23.8437
Ritz-Laguerre ~ 2.6569  2.8709  3.5117 7.9821 23.9152
SD 0.1 Ritz—Hermite  4.0128 4.2937 5.1346 11.0014 31.9071
Ritz-Laguerre  4.0101  4.2911  5.1323  11.0004 31.9084
0.2 Ritz—Hermite = 3.8218 4.0876 4.8836  10.4371  30.2273
Ritz-Laguerre ~ 3.8192  4.0851 4.8815 10.4361  30.2285
0.3  Ritz—Hermite = 3.6324 3.8826 4.6318 9.8587  28.4864
Ritz-Laguerre ~ 3.6299  3.8802  4.6298 9.8578  28.4875
0.4  Ritz—Hermite = 3.4431 3.6771 4.3775 9.2638  26.6787
Ritz-Laguerre = 3.4407 3.6748  4.3755 9.2628  26.6797
0.5 Ritz—Hermite = 3.2524 3.4693 4.1187 8.6494  24.7981
Ritz-Laguerre =~ 3.2501 3.4672 4.1169 8.6485  24.7990
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Table 11 Normalized critical
buckling loads of the square
PMF microplates under uniaxial
compression with different BCs
(MAT 1, a/h = 10)

@ Springer

BCs Type distribution 8 Theory h/l
00 10 5 2 1
SCSC  UD 0.1 Ritz—-Hermite = 4.7816  5.0648 5.9094 11.7613  32.5557
Ritz-Laguerre = 4.7944  5.0757 59164 11.7602  32.5554
0.2 Ritz—Hermite = 4.3975 4.6651 5.4635 10.9965 30.6609
Ritz-Laguerre =~ 4.4087  4.6747 5.4694 10.9948  30.6594
0.3 Ritz—Hermite = 4.0162 42675 5.0169 10.2118 28.6774
Ritz-Laguerre ~ 4.0261  4.2757 5.0218 10.2096  28.6749
0.4 Ritz—Hermite = 3.6353  3.8691 4.5663 9.4006  26.5867
Ritz-Laguerre ~ 3.6439  3.8761 4.5703 9.3980  26.5831
0.5 Ritz—Hermite = 3.2515 3.4664 4.1075 8.5539  24.3627
Ritz-Laguerre =~ 3.2587  3.4723  4.1106 8.5508  24.3584
SD 0.1 Ritz—Hermite = 4.9348 52183 6.0637 119181 32.7184
Ritz-Laguerre  4.9488  5.2303 6.0716 119175 327172
0.2 Ritz—Hermite = 4.7033 49718 5.7723 11.3150 31.0072
Ritz-Laguerre  4.7171 49837 5.7802 11.3142  31.0035
0.3 Ritz—Hermite = 4.4751 4.7279 54817 10.6997 29.2375
Ritz-Laguerre = 4.4885 4.7395 5.4895 10.6987  29.2309
0.4 Ritz—Hermite = 4.2482 4.4848 5.1900 10.0696  27.4035
Ritz-Laguerre ~ 4.2617 4.4966 5.1979 10.0685  27.3939
0.5 Ritz—Hermite = 4.0211 42408 4.8954 9.4221  25.4996
Ritz-Laguerre  4.0348  4.2528  4.9036 9.4207  25.4861
Ccccc  UD 0.1 Ritz-Hermite = 7.2066 ~ 7.7529  9.3772  20.5925  60.5079
Ritz-Laguerre ~ 7.2087  7.7607  9.3998  20.6066  60.5522
0.2 Ritz—Hermite = 6.6402 7.1564 8.6914 19.2962  56.1332
Ritz-Laguerre ~ 6.6424  7.1637  8.7125 19.3026  56.1381
0.3 Ritz—Hermite = 6.0758 6.5601 8.0006 17.9581 51.9046
Ritz-Laguerre  6.0778  6.5668  8.0200 18.0165  51.9990
0.4 Ritz-Hermite = 5.5495 5.9598 72997 16.5666 48.0675
Ritz—Laguerre ~ 5.5513 59660 7.3175 16.6068  48.0901
SD 0.1 Ritz—Hermite = 7.4160 7.9634 9.5899  20.8101 60.6146
Ritz-Laguerre ~ 7.4182  7.9713 9.6128 20.9251 61.0770
0.2 Ritz—-Hermite = 7.0582 7.5769  9.1175 19.7408  57.4269
Ritz-Laguerre ~ 7.0605 7.5846  9.1394  19.8490  57.8579
0.3 Ritz—Hermite = 6.7020 7.1909  8.6423  18.6441 54.1228
Ritz-Laguerre ~ 6.7040  7.1980 8.6627  18.7448  54.5204
0.4 Ritz—Hermite  6.3440 6.8020 8.1607 17.5149  50.6915
Ritz-Laguerre ~ 6.3462  6.8089  8.1800 17.6081  51.0542
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20 . . . i i «Fig. 7 Variation of normalized critical buckling loads of PMF SD
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ARTICLE INFO ABSTRACT

Keywords:

Laminated composite plates

Vibration and buckling optimization

Unified higher-order shear deformation theory
Balance composite motion optimization
Shrimp and goby association search algorithm

The authors propose meta-heuristic optimization algorithms for the vibration and buckling analysis of laminated
composite plates. This approach combines unified higher-order shear deformation theory, the Ritz method, and
three optimization algorithms: the Shrimp and Goby Association Search Algorithm (SGA), Balancing Composite
Motion Optimization (BCMO), and Differential Evolution (DE). The Ritz method, utilizing hybrid shape func-
tions, is employed to solve optimization problems by using the Gram-Schmidt process to construct approximation

functions. The SGA and BCMO are applied for the first time to determine the optimal buckling loads and fre-
quencies of laminated composite plates. Numerical examples are provided to explore the influence of fiber angle,
modulus ratio, and various boundary conditions on the optimal results. The findings demonstrate that BCMO and
SGA are efficient and robust algorithms for addressing the optimization problems of laminated composite plates.

1. Introduction

Laminated composite plates have found extensive applications in
engineering fields such as mechanical engineering, aerospace, con-
struction, and more ([1-5]). Among the critical factors influencing their
mechanical properties, the customization of fiber orientation is a pivotal
element in shaping structural stiffness. In practice, achieving optimal
fiber orientation demands a complex computational process, which has
drawn the interest of numerous researchers employing various compu-
tational approaches.

In order to optimize responses of the laminated composite structures,
meta-heuristic optimization methods have been recently considered as
robust and reliable approaches for a wide range of complicated opti-
mization problems. The core components of metaheuristic algorithms
are exploration and exploitation. Exploration involves thoroughly
searching the entire solution space to generate a variety of potential
solutions, while exploitation focuses on refining the search within spe-
cific regions to identify the best solutions based on the knowledge
gained from previous candidates. Randomization plays a crucial role in
exploration, helping to avoid getting stuck in local optima. By such a
way, metaheuristic optimization algorithms could approach to global
optimization solutions. In general, meta-heuristic optimization

* Corresponding author.

algorithms [6] could be divided in three popular categories. The first
category is inspired by the phenomenon of evolution observed in the
natural world in which the algorithms are generally derived from the
principles of Charles Darwin. Based on this approach, a number of
optimization algorithms have been developed such as differential evo-
lution (DE) [7,8], genetic algorithm (GA) [9], genetic programming
[10], non-dominated sorting genetic algorithm II (NSGA-II) [11]. In
general, they directly utilize the objective function and constraints to
seek optimal solutions. The selection of an optimal candidate for the
next generation necessitates consideration of their capacity to adapt and
thrive within their ecological surroundings. Some representative earlier
works are herein cited for optimization of laminated composite plates.
Karakaya et al. [12] compared the optimal buckling results obtained
using the GA algorithm with those obtained using the generalized
pattern search algorithm. Ho-Huu et al. [13] employed the DE algorithm
and the smoothed Finite Element Method (FEM) to analyze optimal
buckling responses, taking into account fiber angle and layer thickness
as design variables. By using the NSGA-II and GA algorithms, Kalantari
et al. [14] investigated the minimum flexural strength of composite
laminates with design variables being fiber angle and fiber volume
fraction. Drosopoulos et al. [15] used NSGA-II and FEM to scrutinize the
maximum frequency of laminate composite plate with layer thickness,
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Fig. 1. Geometry of laminated composite plates

fiber distribution, and fiber angles as design variables. Moreover, the
second type of meta-heuristic optimization algorithms encompasses
swarm-based approaches, from which a number of optimization algo-
rithms have been developed such as Ant colony optimization (ACO)
[16], shrimp and goby association search algorithm (SGA) [17], drag-
onfly algorithm (DA) [18], particle swarm optimization (PSO) [19], salp
swarm algorithm (SSA) [20]. The SGA is developed without depending
on input parameters. Its concept is inspired by the symbiotic relationship
between shrimp and goby fishes in their natural habitat. In this
ecosystem, the goby uses the shrimp’s burrow as a haven during the day
and a regular resting place at night. Essentially, the security level of the
shelter is contingent upon the shrimp’s capacity to allure the gobiid fish.
It is noted that the efficacy of these algorithms relies on the synchroni-
zation of a collective of particles, which impedes the ability to discern
and independently assess individual particles. Instead, particles partic-
ipate in collective communication to determine their subsequent course
of action. A collective of agents engaged in continuous movement and
interaction across several activities is often known as a particle swarm.
The use of these algorithms for optimization of laminated composite
plates could be mentioned in the following earlier works. By using a
higher-order shear deformation theory (HSDT), isogeometric method
(IGA) and the PSO algorithm, Shafei et al. [21] investigated the mini-
mum frequency of laminated composite plates. Based on the HSDT, FEM
and PSO, Vosoughi et al. ([22,23]) studied the optimal buckling loads of
composite laminated plates with design variables as fiber orientations.
Finally, the third set of meta-heuristic optimization algorithms com-
prises those influenced by physical principles. In order to direct the
movement of particles throughout the optimization process, these al-
gorithms take their cues from the most fundamental scientific laws.
Some examples of these types of algorithms are the balancing composite
motion optimization (BCMO) [24], the curved space optimization (CSO)
[25], and the water wave optimization (WWO) [26]. These principles
include the dynamics of magnetic fields, the gravitational interactions
among celestial bodies, electron charge transfers, chemical processes.
More importantly, these algorithms typically necessitate interrelated
parameters and involve substantial computational expenses. Besides, it
can be observed that the recent development of the BCMO eliminates the
need for interdependent parameters to address this challenge. This
approach draws inspiration from assuming the solution space operates
within Cartesian coordinates, balancing the global and local search
movements of potential solutions. Indeed, a potential solution can
approach superior solutions to exploit local areas and extend further to
explore the search landscape. Consequently, the highest-ranked indi-
vidual in each generation can swiftly transition between spaces or
enhance its existing local exploration.

In the realm of computational methods for structural analysis, various
approaches have been employed. Among these, the Ritz method [27] can
be considered as an efficient and accurate approximate solution. Due to
its advantages, researchers have widely applied this method to explore
static and dynamic responses in beams, plates, and shells. However, it is
noted that the precision, stability, and convergence of Ritz solutions rely
on the construction of approximation functions, which must satisfy
geometric boundary conditions (BCs) and be computationally stable
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[28]. Many researchers have typically employed orthogonal polynomials
(OP) due to their convergence and numerical robustness. For example,
Zhou et al. [29] studied the free vibration of rectangular plates using the
Chebyshev polynomial for series type solution. Chen et al. [30] studied
the bending and stability of functionally graded (FG) porous plates based
on the Chebyshev-Ritz method. Non-orthogonal polynomial (NOP) series
offer computational simplicity but sacrifice orthogonality, impacting
certain advantages. For instance, Nguyen et al. ([31]) analysed the
structural responses of FG sandwich beams based on the NOP for ad-
missible function. In addition, the penalty function method [32] offers an
alternative for integrating the BCs. However, this technique results in
augmented dimensions of the mass and stiffness matrices, consequently
escalating computational expenses. In addition, there has been devel-
opment in the utilization of the admissible function as a hybrid form ([33,
34]). Moreover, the Gram-Schmidt (GS) procedure can make the admis-
sible OP function. Liew et al. [35] studied the frequency of regular
polygonal plates using the shape function created from the GS process
with the initialization function chosen to satisfy at least the geometrical
BCs. Based on this approach, there are some studies for laminated cy-
lindrical shells ([36-38]) with shape functions created from the GS
technique within the first function satisfying the BCs, which has caused
difficulty for structures with complex geometric designs.

A brief literature survey indicates that the BCMO and SGA algorithms
are recognized as efficient methods for structural optimization. However,
no research has been identified that specifically employs these algorithms
for solving optimization problems of laminated composite plates. This
study aims to address this gap by proposing meta-heuristic optimization
algorithms to minimize the critical buckling loads and fundamental fre-
quencies of laminated composite plates. Additionally, a new hybrid shape
function for the Ritz method is also presented in this study. The theoretical
framework incorporates a unified HSDT, Ritz method, three optimization
algorithms: BCMO, SGA and DE. To address the problems, the series-type
solution employs OP generated through the Gram-Schmidt process. SGA
and BCMO are employed to optimize vibration and buckling analysis of
laminated composite plates, and their performance is compared with the
DE algorithm. Numerical examples explore the impact of fiber angle,
modulus ratio, and various BCs on the optimum results.

2. Theoretical formulation

To address shear deformation in plates, the first-order shear defor-
mation theory is the simplest method, but it requires a shear correction
factor to properly handle the free-traction boundary conditions for shear
stresses [39]. In contrast, the HSDTs ([33,40-44]) with higher-order
variations of in-plane displacements or both in-plane and out-of-plane
displacements (Quasi-3D) ([45-49]) do not need such correction fac-
tors. However, the HSDTs ignore the thickness-stretching effect, resulting
in a uniform transverse displacement across the plate’s thickness. The
significance of considering the thickness-stretching effect has been
highlighted by Carrera et al. [50]. Although plate models incorporating
higher-order variations of both in-plane and out-of-plane displacements
generally provide more accurate predictions than the HSDTs, they are
more complex and costly to implement due to the increased number of
variables. For simplicity purpose, in the present study, the unified HSDT
for laminated composite plates in Fig. 1 is referenced by ([33]) as follows:

uy (X1, X2, X3, t) = 61 (X1, X2) P2 (23) + Ugl‘lﬁ (x3) + u(])(xlax2)
U (X1, X2, X3, t) = O2(x1,X2) P2 (23) + Ug‘z‘ljl (x3) + ug(xl,xz) @

uz (X1, X2, X3,t) = Ug(xhxz)

where W5(x3) = H'®(x3),¥1(x3) = H'®(x3) — Xx3; H® is the transverse shear

; . _ (2 +v)fs, /"3 f )
stiffness; ®(x3) = /0 o) dxs = L (X3)dx3’ and f(x3) is a

higher-order component that needs to fulfill a specific condition f 3 <x3 =
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i%) = 0; u?,u} and ul are membrane and transverse displacements at

neutral plane; 0;, 0, are rotations at neutral plane with respect to the x; —
and xy — axis, respectively; the comma in the subscript is used to indicate
the differentiation of the variable that follows.

The components of strains ™ = [e11 €22 712 713
as follows:

723 | are found

e = W3(x3)e® + Wy (x3)e® + W (x3)eV) +e© 2
where W3(x3) = @, 3H° with @ 3(x3) :f:(gfj)) and,
0 1
5(11> u(l).l 5(11> ug,u
(0) (1)
€22 U €22 U3
0 _ 0 | _ 1) _ n{_
e = 7/52) = U, +ud, el = 752) =924, (3)
0 1
}’<13) 0 J’<13)
0 1
Y<23) 0 7<23) 0
(2 3)
511> P 8(11 0
() 1.1 3)
€32 0o €22 0
e? = y<122) =< 012+02; p,6® = 7532) = 0 . (3b)
2 0 3) 6, +u
7(13) 0 753 1t z'l
2 3
J’(23) 7(23> 02+ Uz

The relationship between the strains and stresses for the k layer is
expressed as:

= k) =) =k
011 Q(k)ll Q(k)12 Q(k)16 0 0 €11
022 Q(k> 12 Q(k) 22 Q(k) 2 0 0 €99 _
0=9012,=1Q "1 Q22 Q ¢ 0 0 Y12 o = Qe
013 0 0 0 a(k)ss Q" 45 "3
o " =k
23 0 0 0 Qs QY4 V23
C)]
where
—(k . .
Q(u) = Q¥sin*a + Q¥ cos*a + 2 (2ng6) + ngz))coszasmza (5a)
—(k . .
Q(u) = Q) (cos*a +sin*a) + (QF) —4QY + Q) cos?asina (5b)
ik . .
Q; = 2(2Q¥ + Q) cos?asin’a + @ sin*a + Qff cosa (50)

—(k . .
Q(w) = (Zng,,) +Qll — Q(zkz))smgacosa + (ngl) - (ngz) + 2Q§,’2))smacos3a
(5d)

Q= (2QY) + QY — Q%)sinacos®a + (QY — (QY +2QY))sin*acosa
(5e)

1 e s s
ST = 5/p(u36u3 + Uty + iy 61 )dV
v
= 5/[12 <Ug.15u2.1 + Ug.Z‘SUg.z) + K(60160, + 02005)

A

Io (1061 + 1361 + 1i36113) + I (u‘f(sug‘l + a8l + il + ug‘zaug)
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—(k . .
QY - (@ + QY ~2(Ql + Q) eostasin’a + Q (cos'a+ sin'a)

(50
Q) = Q¥cos?a + Q¥sin’a 59
(_Zi—,’;) = QNsin’a + Q¥ cos?a (5h)
Qe = (Q¥ - QYY) cosasina k)

with a is the fiber angle in each layer (Fig. 1); ngk) of the orthotropic
composite plates in the local coordinate system are given by:

E; ) V12E2 (k) E,

_ _ ® _ . o®
= 12, Qa4

k
Q(n) =

s W12 — 3
1 — vy

1 —viovm
_ (k) _

- G237 Q55 - G13

(6)

To obtain the equations of motion, Hamilton’s principle is employed:

ty
/ (6T1gs + 811y — STTg)de = O @

5]
The variation of the strain energy dllgg is given by:

Ollsg = / 6edA = / [NOse© + NMse® + N®se® + NPseP]dA  (8)
A

A

where the stress resultants can be derived based on the strains and their
gradients using the following expressions:

h/2
(N®,N® N NO) = / (¥3, Vs, W1, 1)odxs 9
—h/2
N A" B° By 0 (.0
NV Bf Df D; 0] .
N® B DO H 0]]e?
NG o o o a|le?

where the stiffness components are given:
h/2
(A%, B°, D, H!, B!, D{, Af) = / (1,91, 93, 93, Vs, W1 92, ¥7) Q.dxs
—h/2
(1n

The change in the work done &I1y due to compressive membrane
loads (NY = NJ = N9, = N°) is expressed as:

STy = — / N (8,008, -+ 1 30, + 208 60, )dA 12)
A

The variation of kinetic energy Il is calculated by:

13

1 (03601 -+ 01805 + 1502 + 02013) -+ Jo (13,601 + 61543, + 3,602 + x5, )| dA
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Table 1
Approximation functions of series-type solution.
BCs X;(x1) Yj(x2)
SSSS x1(a — x1)¢; Xa(b — x2)¢;
CSCs x3(a — x1)d; x3(b — X2)dh;
cccc X (a—x1)% B(b —x2)°¢;

SFSF x1¢; X2 zf)j

where the overdot is used to indicate the derivative of the variable with
the time; Ko,Jo,J1,I2,11,Ip are mass components of the laminated com-
posite plate which are determined as:

h/2

JRCE AR a4)
—h/2

(K2,J2,J1,L,1,Iy) =

3. Ritz method

The membrane and transverse displacements, as well as rotations
(u?,uS,ul, 61,62) can be represented through a series of shape functions
in x; —, x2 — direction (Xj(x;) and Y;(x2)) and five unknowns variables
(u14,u2,U3ij,X;5Y3j), expressed as follows:

nm

ng
u(x1, %z, t) = Z ZUzij(t)Yj.z(Xz)Xi(X1)§U(l)(xthJ)
=

=> i Uy (£) Yj(x2) X1 (x1) (15a)
— —

nm_o np

02001,%2,8) = > ¥(8) V2 (X2) Xi(x1); 61 (X1, X2, )

-1 j=1

=3 3w e asb)
=1

n

U, Xz, 1) = ) Zzusij(t)Yj(Xz)Xi(xl) (150)
=

i=1

The shape functions are pivotal in dictating the convergence rates,
accuracy, and susceptibility to numerical instabilities within the Ritz
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solution. This critical relationship underscores the significance of
meticulously crafting and analyzing shape functions, a topic detailed in
prior studies ([31,34,51]). Next, the admissible orthogonal polynomial
(OP) functions proposed by Bhat [52] are discussed, which are con-
structed using the Gram-Schmidt (GS) method [53]. These functions
exhibit a rapid convergence rate, although they encounter challenges in
determining the initial function. Using the GS approach is defined as
follows:

100 = (x— ADBX), () = (x — A1 () — Dedho(0)  (162)
d d
[owixstar [own 0

Ap = i D=y (16b)
[t eax [t ax

where w(x) being the weighting function. The orthogonality is satisfied
by the polynomials ¢y(x) as below:

d
[wenione={ o 4 (7] a”

(£
c

with w(x) = 1; ¢o(x) = 2x + 1, and [c, d] € [ — 1, 1]. The first five
orthogonal polynomials are shown in Fig. 2. The shape functions X;j(x1)
and Yj(xp) in Table 1 are made to satisfy the BCs in which clamped (C)
and the simply-supported (S) edges are as follows:

o Clamped (C): 01 =0, =ud =u=u=0atx; =0,aand x =0, b
e Simply supported (S):0=u)=u}=0 at x; = 0, a and at
wW=u}=6,=0x=0,b

The laminated composite plate’s edge conditions, a mix of simply-
supported, clamped and free boundaries (SSSS, SFSF, CSCS, CCCC),
are pivotal in numerical analyses. By incorporating Eq. (15) into Egs.
(8), (12), and (13), and the subsequent outcomes into Eq. (7), the
characteristic motion equations are derived via the displacement vector
d, stiffness matrix Kand mass matrix M as follows:

Kd + Md=0 (18)

where

Kll Klz K13 K14 KIS
TK12 K22 K23 K24 K25
d=[w u, u; x y]'andK= |TK® TK® K3 K* K%¥
TRI4 TR TR gM RS
TK15 TK25 TK35 TK45 K55
(19)

Table 2
Convergence study for [0°/90°/90°/0°] plates with different BCs (a/h = 10, E;/
E5 = 40).

BCs Number of series n = n; = ny

2 4 6 7 8 9

Normalized fundamental frequency

SSSS 16.2797 15.5288 15.1192 15.1191 15.1192 15.1191
CsCs 21.1622 19.5302 19.2501 19.2502 19.2501 19.2501
CCCC  23.4273 22.3269 22.0249  22.0247  22.0248 22.0249
SFSF 4.1909 4.0209 4.0109 4.0110 4.0109 4.0110

Normalized critical buckling load under uniaxial compression (N?,N3,N{, =1,0,0)

SSSS 27.1409  25.1061 23.7876  23.3042  23.3043  23.3042
CSCS 36.5583  34.8010 34.6724  34.5755  34.5757  34.5755
CCCC  46.4065 44.3619  44.1133  44.0404  44.0403  44.0404
SFSF 4.7865 4.7274 4.7109 4.7084 4.7085 4.7084
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The components of K is formulated as:
K;i? = 512T2OS + lesTilkOS}lz + Bsas Tilsﬁl + BsssTilklsjlll
Kig = AnTR2SY + 2A16Ty2S;0 + Ace Ty Si'
Kﬁ)?] - 522'1“0 + ZleﬁT S + BSGGT S

K2 = A1 TS + Are T2 ST + Ags TSI + A TSI

K5 = Du TSy + Dy, (Tgfsﬁo + T?kosj.}z) + Do TR'S7® + 4Des Ty S + 4D1 T3 SY

4D TSP + Aus TOSE + 24,45 TROST + Ass TSP — N° (T};s;;o + TSI + 2T10S) )

Kjiy = BuT2S)’ + BioTe2S3° + 2B16 T3 Sy + Bas TiS}” + 2Bes Ty, Sy

Ki = Ban TSy’ + 2Bas Ty Si' + Bues Ty St

K = Dan TS + Daa TR S + 2Dses Ty Si' + 2Daas Ty2S)
+Da6 T ST + AusTg' S0 + Asss Ty S’

Ky = Ba2TR2S3’ + BasTa' S)' + Baas Ty Si” + Beeo Ty Si'

Kukl A22T3<05j212 + 2A16Tg<1 + Ass THS‘lzl KEIEI = lt)slzTgl)(Zszl0 + Ds2z 73(051212 + 2Dge6 Tilklsjll1 + DﬂeTilSﬁl
+2Ds26 Tilkosjllz +Ags Tiosﬁl + Agy Tﬁf’s}f
K2 = BTy, S +322Tg<0 S22 4 2B T, 5 + BT S + 2B Ty, S

Ul

Kj = Hi1 TSP + Huso Ty Si' + 2Hae T3 S + Asss T3 S

Table 3
Normalized fundamental frequencies of [0°/90°/90°/0°] plates.
BCs a/h Theory Ey/E,
3 10 20 30 40
SSSS 10 TSDT [55] 7.240 9.847 12.225 13.987 15.112
TSDT [54] 7.247 9.853 12.238 13.892 15.143
Present 7.2137 9.8325 12.2395 13.8917 15.1192
20 HSDT [56] - - - - 17.6620
Present 7.4397 10.4096 13.4353 15.7603 17.6695
25 HSDT [56] - - - - 18.0875
Present 7.4825 10.5176 13.6504 16.0987 18.1445
CSCS 10 Present 9.8392 13.6002 16.4517 18.1279 19.2501
20 Present 10.3734 15.1558 19.6100 22.7754 25.1996
CCcC 10 Present 12.7654 17.1590 19.8039 21.1663 22.0249
20 Present 13.8842 20.5707 26.0621 29.5058 31.8833
SFSF 10 Present 1.4622 2.2829 3.0152 3.5623 4.0109
Table 4

Normalized fundamental frequencies of [0°/90°/0°] plates (w; = (wa® /%) /4/ph/ (E2h3 /(12(1 — v12v21)))),

BCs a/h Theory Eq/E,
3 10 20 30 40
CCCC 10 HSDT [57] - - - - 7.484
RBF-PS [58] - - - - 7.4727
FSDT [59] - - - - 7.4106
HSDT [56] - - - - 7.4224
Present 4.4887 5.9410 6.7371 7.1399 7.4022
20 HSDT [57] - - - - 11.003
RBF-PS [58] - - - - 10.968
FSDT [59] - - - - 10.9528
HSDT [56] - - - - 10.9042
Present 4.8610 7.1875 9.0084 10.1035 10.8381
100 HSDT [57] - - - - 14.601
RBF-PS [58] - - - - 14.4305
FSDT [59] - - - - 14.4455
HSDT [56] - - - - 14.3626
Present 4.9619 7.7474 10.4816 12.6081 14.3997
CSCs 10 Present 3.5360 4.8438 5.7655 6.2794 6.6146
20 Present 3.6949 5.3958 6.9399 8.0117 8.8148
SSSS 10 Present 2.6389 3.6286 4.4577 4.9853 5.3561
20 Present 2.6654 3.7800 4.8782 5.7026 6.3659
SFSF 10 Present 0.5152 0.7987 1.0526 1.2421 1.3967
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Table 5
Normalized fundamental frequencies of [0°/90°] plates.
BCs a/h Theory Ey/E,
3 10 20 30 40
SSSS 5 3D [60] 6.2578 6.9845 7.6745 8.1763 8.5625
RPT [61] 6.2167 6.9836 7.8011 8.4646 9.0227
Present 6.2170 6.9676 7.7038 8.2126 8.5594
10 RPT [61] - - - - 10.5480
Present 6.7995 7.7912 8.8723 9.7954 10.6125
20 RPT [61] - - - - 11.0997
Present 6.9819 8.0413 9.2036 10.2106 11.1161
CSCS 10 Present 9.2150 10.8820 12.5490 13.8987 15.0435
20 Present 9.6325 11.4996 13.4143 15.0219 16.4386
CCcC 10 Present 11.9659 14.3190 16.4770 18.0981 19.3846
20 Present 12.8105 15.6519 18.4309 20.6918 22.6332
SFSF 10 Present 1.3271 1.9078 1.7282 2.2797 2.5274

Kjy = Hao T2 S3’ + HaeT5' SY' + Hos Ty S7' + Heeo Ty Si' + Asas T SY'

Koy = Hoo TR S + Hieo Ty Si + 2Ha6 TR Si7 + Asaa Ty S (20)
where
(X, % 1Y, 7Y,
s _ L2k e, g5 = [ 2212 21
ik ax; 0)(‘1 1, jl axrz axgz 2 ( )
0 0

The components of M are expressed as follows:

11 _ 11Q00 pAq13 _ 1100 prld _ 11 c00
Mijkl - IOTik Sjl %Mijkl - IlTik Sjl ’Mijkl = Tik Sjl

22 0 cl1 23 0 11 25 0 cll
Mz =I,TY Sit, My = LTY Sit, My =0Ty S

M3 = L (TS} + TSI + LTS
M, = TS M3, = LTSI M = KoTOS) My = KTiSP (22)

For free vibration analysis, denoting d(t) = dei‘”[, where 2 = -1
denotes the imaginary unit, the results can be determined via (K — »?M)
d = 0. The buckling loads can be obtained from Eq. (18) when M = 0.

4. Optimization algorithm

In this section, three algorithms are presented to identify the fiber
angle o that maximizes the critical buckling loads and frequencies of
laminated composite plates, with the following objective functions.

Maximum® = f(af)orN,, = f(a?) 23)
Subjectedto — 90° < af < 90°
with d is the number of layers.

Three algorithms including differential evolution (DE), shrimp and
goby association search algorithm (SGA) and balancing composite mo-
tion optimization (BCMO) are used to solve the above optimization
problem.

4.1. DE algorithm

Initiated by Storn and Price [7,8], the DE algorithm has numerically
shown efficacy and robustness in identifying an optimum solution
throughout a defined continuous domain.

Initialization: The initial distribution of the population is created in
a stochastic way as follows:

x;; = %" + rand(1, d) x <x]‘f‘ax fx;"‘"> 04

with d represents the count of design variables.

Mutation: A mutated vector v derives from the goal vectors x! in the
current iteration through mutation. The five frequently employed mu-
tation choices are as follows:

rand/1: vi = v}, + F(vtT2 - Vfr3> ;best/1:vi =vj,, + F(v‘T1 - V‘Tz>
current — to — best/1 : vi = J (xfT1 - X‘Tz> +J (Xpgee — X¢) + X,
rand/2 : v; = X, +J(x§2 - xtT3> +J<xtT4 - xtTS)
best/2: vi = J(x‘T3 - x[n) + J<x[T1 - x‘Tz) + X,
(25)

where T1, T, T3, T4and T5 consist of randomly selected integer values
from within the range of [1, NP], NP is a population size; J is randomly
chosen [0, 1], when each of them is entirely distinct from the index i,
vj;is determined:

t

s .
2xmin_j —Vij lf Vi,i < Xminj
t L 5. t
Vi.j = 2xmaxj - Vij 7f Vij < Xmaxj (26)
v otherwise

ij

Crossover: During this stage, a crossover mechanism enhances the
variety among individual vectors u} within the present population.

x;

ij

ut i j=1L or rand < [0.1,1
" _{ o . < [0.1,1] 27
otherwise

Selection: This process aims to pick superior individuals from the
current population for the subsequent iteration.

X f) < %
xl&l — { [ ( ) ( ) (28)
u; otherwise

4.2. SGA algorithm

Sang-To et al. [17] first has introduced SGA algorithm, which
showed the efficacy in addressing high-dimensional single-objective is-
sues of varying complexity.

The initial population:

Bi"' =Bl +fry ® (S — BY) (29)

where B is the position vector of an individual; S* denotes the positional
vector of the finest burrow; d is number of items; f € [2, 1] is linear
function; r, € (0, 1).

Global Search: the mathematical modeling of signal transmission is
expressed as:
Biii =2 x G, 45 Bl =13 x (ubg —Ibg) + Ibg (30)

md>
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Fig. 3. Mode shapes of vibration of laminated composite plates a/h = 10, E1/E, = 40, [0°/90°/0°], @1 = (wa® /z%)/y/ph/ (E2h3 /(12(1 — vlzvz1)))

Table 6
Normalized critical buckling of [0°/90°/90°/0°] plates under uniaxial compression (N9,N3,N9, = 1,0,0).
BCs a/h Theory E1/E;
3 10 20 30 40
SSSS 10 HSDT [56] 5.4418 10.0208 15.4010 19.7810 23.4383
TSDT [62] 5.3933 9.9401 15.2945 19.6644 23.3401
TSDT [63] 5.3884 9.9303 15.2841 19.6558 23.3152
Present 5.3600 9.9008 15.4386 19.8632 23.3042
20 TSDT [63] - - - - 31.6975
Present 5.6353 11.0146 18.3350 25.2412 31.7690
CSCS 10 Present 8.4138 16.2424 24.3199 30.1327 34.5755
20 Present 9.1960 19.6748 33.1939 45.2623 56.1154
CCcC 10 Present 13.0602 24.7163 34.3922 40.1873 44.0404
20 Present 15.2033 34.0280 56.3164 74.5690 89.8246
SFSF 10 Present 0.6486 1.5315 2.6548 3.7065 4.7084
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Table 7
Normalized critical buckling of [0°/90°/0°] plates under biaxial compression (N9,N3,N), =1,1,0).
BCs a/h Theory Ey/E;
3 10 20 30 40
SSSS 10 HSDT [64] - 4.963 7.516 9.056 10.259
TSDT [65] - 4.977 7.544 8.942 10.109
TSDT [62] - 4.916 7.448 8.820 9.9755
TSDT [63] 4.9130 7.4408 8.7550 9.8795
Present 2.7091 4.9492 7.5045 8.8676 10.0343
20 TSDT [63] - - - - 13.0239
Present 2.8325 5.5194 8.9582 11.0737 13.0866
CSCS 10 Present 4.3300 7.5574 9.8814 11.4624 12.8231
20 Present 4.7207 9.2268 13.2198 16.5097 19.4522
ccee 10 Present 6.7537 10.7581 13.1204 14.8401 16.2244
20 Present 7.7957 14.2191 19.5382 23.9094 27.6485
SFSF 10 Present 0.3374 0.7598 1.2257 1.6005 1.9244
with Ib and ub are lower and upper boundaries. B{ ; indicates the d™in-
Table 8 . . . . . s
. . o oo o formation component of shrimp;B!, , is the d™"information of gobiid fish.
Normalized shear buckling of [0°/90°/90°/0°] plates (N?,N3,N?, = 0,0,1), a/h s )
—10 Local Search: The weakest candidates are placed into the top two
shelters to enhance survival, concurrently bolstering the efficacy of local
BCs EvE, search process.
3 10 20 30 40 - . - .
Bl =S @ (1+c¢cxr3);B" =8, ® (1+¢xr (31)
SSSS 11.0219 17.9481 24.2755 28.5083 31.4874 ! 1 ( ¢ 3)7 ! 2 ( ¢ 3)
CSCS 13.4321 21.2794 19.2607 31.1782 33.5337 t ot . . . . .
cece 15.5753 23.7884 29,5902 33.0073 35.3192 where S}, S}, represents the optimal positions of neighboring burrows; ¢
SFSF 0.6950 1.4574 2.5695 3.6911 4.8029 €2,1;r3e(-1,1).
More details regarding the SGA algorithm can be found in Ref. [17].
Table 9
Optimization critical buckling of symmetric square laminated composite plates with four layers (a/h = 10, E1/E; = 40,NP = 20) under uniaxial compression (Ny,N3,
NY, =1,0,0).
Iterations Solution” Max values o o? o® oa® Call function Determinate[0°/90°/90°/0°]
SSSS
500 FEM-DE [13] 30.7692 -39 42 42 -39 840 23.3042
100 Ritz-BCMO 36.9822 -37 39 39 -37 20
Ritz-SGA 36.9822 -37 39 39 -37 27
Ritz-DE 36.9822 -37 39 39 -37 50
SFSF
100 Ritz-BCMO 17.2807 30 -60 -60 30 20 4.7084
Ritz-SGA 17.2807 30 -60 -60 30 27
Ritz-SGA 17.2807 30 -60 -60 30 50
CSCS
100 Ritz-BCMO 39.5512 31 -48 -48 31 20 34.5755
Ritz-SGA 39.5512 31 -48 -48 31 27
Ritz-DE 39.5512 31 -48 -48 31 50
ccee
100 Ritz-BCMO 44.4767 -10 85 85 -10 20 44.0404
Ritz-SGA 44.4767 -10 85 85 -10 27
Ritz-DE 44.4767 -10 85 85 -10 50
Table 10
Optimization critical buckling of square laminated composite plates with four layers (a/h = 10, E1/E, = 40,NP = 20) under uniaxial compression (N¢,N3.N?, =1,0,0).
BCs Iterations Solution Max values a® o? oa® a® Call function
SSSS 12 Kriging-IPSO [66] 35.4351 36 -37 36 -36 20
20 Ritz-BCMO 36.9569 37 -33 36 -39 7
Ritz-SGA 36.9569 37 -33 36 -39 12
Ritz-DE 36.9569 37 -33 36 -39 25
CSCS 20 Ritz-BCMO 39.3736 33 -85 33 -25 7
Ritz-SGA 39.3736 33 -85 33 -25 12
Ritz-DE 39.3736 33 -85 33 25 25
CCcCC 20 Ritz-BCMO 44.6772 -20 75 -70 20 7
Ritz-SGA 44.6772 -20 75 -70 20 12
Ritz-DE 44.6772 -20 75 -70 20 25
SFSF 20 Ritz-BCMO 17.1737 36 -16 36 -33 7
Ritz-SGA 17.1737 36 -16 36 -33 12
Ritz-DE 17.1737 36 -16 36 -33 25
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Optimization fundamental frequencies of square laminated composite plates with four layers (a/h = 10, E;/E» = 40,NP = 20).

(1) 2 (3)

BCs Solution Theory Max values o o o o Call function
SSSS Asymmetric Ritz-DE 19.1344 41 -55 43 -43 20
Ritz-SGA 19.1344 41 -55 43 -43 7
Ritz-BCMO 19.1344 41 -55 43 -43 5
Symmetric Ritz-DE 18.7588 34 -43 -43 34 20
Ritz-SGA 18.7588 34 -43 -43 34 7
Ritz-BCMO 18.7588 34 -43 -43 34 5
SFSF Asymmetric Ritz-DE 9.0532 -33 40 -39 33 20
Ritz-SGA 9.0532 -33 40 -39 33 7
Ritz-BCMO 9.0532 -33 40 -39 33 5
Symmetric Ritz-DE 9.9969 30 -37 -37 30 20
Ritz-SGA 9.9969 30 -37 -37 30 7
Ritz-BCMO 9.9969 30 -37 -37 30 5
CSCS Asymmetric Ritz-DE 21.1601 -34 77 -35 51 20
Ritz-SGA 21.1601 -34 77 -35 51 7
Ritz-BCMO 21.1601 -34 77 -35 51 5
Symmetric Ritz-DE 21.2345 48 -34 -34 48 20
Ritz-SGA 21.2345 48 -34 -34 48 7
Ritz-BCMO 21.2345 48 -34 -34 48 5
CCCC Asymmetric Ritz-DE 22.9067 47 -39 33 -49 20
Ritz-SGA 22.9067 47 -39 33 -49 7
Ritz-BCMO 22.9067 47 -39 33 -49 5
Symmetric Ritz-DE 22.9472 49 -21 -21 49 20
Ritz-SGA 22.9472 49 -21 -21 49 7
Ritz-BCMO 22.9472 49 -21 -21 49 5
38
® T 36
o 36 o
[®)]
£ 8 34
S 34 X
= S
2 2 37
832 g
= “~
= =
© o 30
- - - -BCMO — - - =-BCMO
0 30 (7))
8 .......... SGA o r SGA
——DE @ 28 ——DE

N
[es]

0 20 40 60 80 100 120
Iterations

a) Symmetric layers

Fig. 4. Comparison of the maximum buckling load (uniaxial compression) of SSSS

4.3. BCMO algorithm

Le-Duc et al. [24] proposed the BCMO algorithm, which is a
population-based optimization technique that aims to achieve a global
optimum by skillfully balancing the composite motion properties of
individual entities. The process of achieving a balance between global
and local search is facilitated by employing a probabilistic model of
selection, which in turn creates a mechanism for movement for each
individual.

Initialization: The population is established in a random manner
shows that:

j

X; = x; +rand(1,d) x <xlU —ﬁ) (32)

wherex? andx! are the upper and lower bounds of the i — individual;

5 10 15 20 25 30
Call function

b) Arbitrary layers

square laminated composite plates with size population NP = 20 (E;/E; = 40)

d is number of parameter applied.

Immediate global point and optimal individual: The global point
x5, which represents the current global optimum, is determined by the
previous best point x{~!, in relation to a trial u}, utilizing the objective
function.

t

X _{ U

oin = 1
Xy

where u} is calculated as follows based on data about the current gen-
eration’s population:

iff (W) <f@)

. (33)
otherwise

= (¢ +x) /24 Vs + Vo (34)

where v}, y,and v}, ; are determined using L;s = 1as follows:
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rand(1,d)
—rand(1,d)

if TV;>05

otherwise ’ (35)

Vijj = 7(.7('1' +xj)LLS X {

Coordinated movement of individuals within the solution
space: In the context of BCMO, the motion of the global search v; which
is determined:

1 .
e dNPj if TV;>05
Vi = — (X 4+ Xoin) Lgs x N (36)
-il p rj2
e otherwise

whereNP is the population size; rj = ||xj — Xoin|
The probabilities for these vy cases are identical and can be

25§
- - -SGA
.......... BCMO
2 ——DE

——

Best fundamental frequencies

lterations

a) The fundamental frequencies
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calculated in the following manner:

G(vin) = G(vij) x G(v;) =05x05=0.25n=1,...,4 (37)

The i individual’s revised position in the succeeding generation is as
follows:

Xl&l = Xf + Vi +v; (38)

Further information regarding the BCMO algorithm is available in
Ref. [24].

5. Numerical examples

Several numerical examples are conducted to explore vibration and
buckling behaviors of laminated composite plates. Convergence and
verification are carried out first and then DE, SGA and BCMO algorithms
are employed to determine their optimal frequencies and buckling loads.
The analysis involves employing the function

®(x3) = cot ! (h /x3) — (16x§)/(15h3) ([31]1). The material properties

are given as:G12 = G13 = 0.6Ey, Ga3 = 0.5E3, v12 = 0.25, p =1 ([54]). For
simplicity, the following normalized parameters are used:

shear

N.a?

Ncr = h3E2 (39)

2
52 [P,
h Eg

To examine the convergence of current solutions, Table 2 displays
the results of the square [0°/90°/90°/0°] plates with a/h = 10 and F; =
40E;. The outcomes are computed for four BCs (SSSS, CSCS, CCCC and
SFSF) with equal series-type solutions in the x; — and x5 — directions (n;
= nyp = n). The results indicate swift convergences, observed at n = 6 for
fundamental frequencies and n = 7 for buckling loads. Therefore, these
values will be utilized in the numerical examples.

5.1. Verification study

Tables 3-5 provide the fundamental frequencies of [0°/90°/90°/0°],
[0°/90°/0°] and [0°/90°] square plates with various BCs. For SSSS

0.8 =
| - - =SGA
o N BCMO
1 ——DE
206,
[@)]
£ |
~ |
o 1
o}
Q041
© 1
k] I
£ -
» 0.2 1
(0]
m ---.
T \
Ve = = = = = = x .
0
0 20 40 60 80 100
lterations

b) Critical buckling load under biaxial

compression

Fig. 6. Comparison of minimum fundamental frequency and critical buckling load of SSSS square laminated composite plates with size population NP = 20 (E;/E,

= 40)

10



V.-T. Tran et al.

3.5

3

25

2

1.5

Best fundamental frequencies

20 30
Iterations

40 50

10

oo
— e

)

m

Best fundamental frequencies

0 10 20 30

lterations

40 50

50(E1/E, = 40)

plates, the obtained solutions in Table 3 are compared with those who
used the third-order shear deformation theory (TSDT) ([54],[55]) with
a/h = 10 and Thai et al. [56] using HSDT and FEM with NS-DSG3
element with a/h = 20 and 25. For CCCC plates, the present results in
Table 4 are compared with those previously reports by Thai et al. [56],
Zhen and Wanji [57], Ferreira and Fasshauer [58], Ferreira et al. [59]
for case E1/E5 = 40. The results listed in Table 5 are compared with those
published by Noor [60] using 3D elasticity theory with a/h = 5 and Thai
etal. [61] using a refined plate theory (RPT) with a/h =5, 10 and 20. It’s
evident that the present solutions exhibit strong agreement across all
cases, with errors consistently below one percentage. The first two free
vibration mode shapes of the square composite plates are displayed for
illustration purposes in Fig. 3. Some new results are also provided in
Tables 3-5 for other BCs with a/h = 10 and 20. It can be seen that for all
BCs when modulus ratio E;/E> and a/h increase, the natural frequencies
increase. The critical buckling loads of [0°/90°/90°/0°] plates under
uniaxial compression (N9,N3,N?,=1,0,0) and shear
(N9,N3,N9,=0,0,1) as well as of [0°/90°/0°] plates under biaxial
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Fig. 7. Comparison of minimum fundamental frequency and critical buckling load of SSSS and CCCC square laminated composite plates with size population NP =

11

compression (N?,N3, N9, = 1,1,0) are given in Tables 6-8 with different
BCs. The numerical findings closely align with those reported in the
literature for both uniaxial compression ([56,62,63]) and biaxial
compression ([62-65]) cases. Hence, the present Ritz method is reliable
for optimization vibration and buckling analysis of laminated composite
plates.

5.2. Optimization study

In this section, the optimum results of the fundamental frequencies
and buckling loads for uniaxial compression (N9,N3,N?,=1,0,0) of
four-layer square laminated composite plates (a/h = 10, E1/Eo = 40)
with different BCs are investigated. Tables 9-11 show the results of three
different algorithms (DE, SGA, and BCMO) with the population distri-
bution NP = 20. By comparing the results from Tables 8 and 9, it is
evident that the optimal responses obtained in the present study are in
agreement with those reported by Ho-Huu et al. [13] using FEM-DE for
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symmetric lay-up and by Keshtegar et al. [66] using Kriging-IPSO for
arbitrary lay-up. For minimum buckling loads and fundamental fre-
quencies of SSSS plate, the optimal fiber angles are [ — 37°/39°/39°/ —
37°] and [34°/ — 43°/ — 43°/34°] for symmetric lay-ups as well as [37°/
— 33°/36°/ — 39°] and [41°/ — 55°/43°/ — 43°] for arbitrary ones,
respectively, according to all three algorithms (BCMO, SGA, and DE). A
comparative analysis of cost computation performance, involving the
call function, is provided in Tables 9-11 to assess the effectiveness of the
optimization algorithms. The number of call function for the BCMO al-
gorithm is the smallest (20, 7, and 5), while the DE algorithm has the
largest number (50, 25, and 20) for buckling and vibration optimization.
In Table 11, the BCMO algorithm requires the fewest call function,
totalling five, for optimizing fundamental frequencies. The results of the
objective function (OF) for the BCMO algorithm are better than those of
the SGA and DE algorithms. Additionally, new optimal results for
laminated composite plates with arbitrary lay-ups and BCs are provided
as a reference for future studies. To compare the efficacy of various al-
gorithms, Figs. 4 and 5 present the convergence histories of natural
frequencies and buckling loads of SSSS plates obtained using three
different algorithms: DE, SGA, and BCMO. It is evident that the SGA and
BCMO algorithms converge faster than the DE one. For the same number
of call function, BCMO algorithm requires the fewest iterations (Fig. 4a),
and for the same number of iterations, it also has the fewest call function
(Fig. 4b). It should be noted that the comparison is not solely based on
computational cost but extends to the effectiveness of the algorithms in
achieving optimal solutions. Interestingly, while the call function of
BCMO algorithm is better than SGA algorithm, their performance varies.
The OF convergence histories of three algorithms for different BCs are
presented in Figs. 6-8. The change in BCs from SSSS to CCCC impacts
plate stiffness and subsequently affects frequencies and buckling load
values. This variation is emphasized in Figs. 6 and 7, illustrating how
these changes impact the numerical results produced by the algorithms.
It is observed that the BCMO algorithm consistently attains the optimal
solution with notably fewer iterations than the SGA and DE algorithm in
nearly all cases at the maximum iteration. These findings contribute to
understanding the comparative efficiency of meta-heuristic algorithms
in tackling complex optimization problems in structural engineering.

6. Conclusions

This paper studies meta-heuristic optimization algorithms for
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vibration and buckling analysis of laminated composite plates. The
theoretical framework incorporates a unified HSDT, Ritz method and
three algorithms including DE BCMO, and SGA. The obtained numerical
results showed an efficiency and accuracy of the present theory in pre-
dicting the responses of laminated composite plates. The numerical
findings demonstrate that:

e The novel hybrid shape functions require only the first six series to
achieve the convergence and numerical stability for free vibration
and seven for buckling analysis.

o The performance of Ritz-BCMO and Ritz-SGA is superior to that of
Ritz-DE when comparing convergence rates and computation costs

e It is observed that the BCMO algorithm consistently achieves the

optimal solution with significantly fewer iterations than both the

SGA and DE algorithm in nearly all cases at the maximum iteration.

For the minimum buckling loads and fundamental frequencies of

simply-supported square laminated composite plate, the optimal

fiber angles are [ — 37°/39°/39°/ — 37°] and [34°/ — 43°/ — 43°%/
34°] for symmetric lay-ups as well as [37°/ — 33°/36°/ — 39°] and

[41°/ — 55°/43°/ — 43°] for arbitrary ones, respectively.
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Abstract. Based on fundamental equations of the elasticity theory, a unified higher-order
shear deformation theory is developed for bending and free vibration analysis of func-
tionally graded (FG) microplates with porosities. The modified strain gradient theory is
employed to capture the size effects. Bi-directional series with hybrid shape functions
are used to solve the problems. Several important effects including thickness-to-material
length scale parameters, side-to-thickness ratio, and boundary conditions on the deflec-
tions and natural frequencies of FG porous microplates are investigated.

Keywords: bending, vibration, functionally graded microplates, porosity, modified strain
gradient theory, higher-order shear deformation theory.

1. INTRODUCTION

Microstructures have been applied in many engineering fields such as atomic force
microscopes, microelectromechanical systems and nano-electromechanical systems [1,2].
The recent development of functionally graded porous (FGP) materials led to a poten-
tial application, it hence requires advanced computational methods and models espe-
cially at microscales. The study on static and dynamic responses of FGP plates and
shells has attracted a number of researches with various computational methods and
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models [3-14], however, those classical elasticity models could not accurately predict re-
sponses of microstructures. Therefore, advanced computations theories with material
length scale parameters (MLSPs) have been developed with different approaches. A
number of researches has been performed for FGP microplates in which the modified
coupled stress theory (MCT) are mostly used. By considering the rotation gradient in
constitutive equations, the MCT with only one MLSP is known as the simplest theory
accounted for the size effects [15]. Owing to its simplicity, many size-dependent FGP mi-
croplate models with different shear deformation theories based on the MCT have been
developed [16-18]. By adding strain gradients into the strain energy, the modified strain
gradient theory (MST) with three MLSPs was proposed by Lam et al. [19] based on the
classical strain gradient theory of Mindlin [20,21]. This theory is more general than the
MCT and it can be recovered by the MST if the effects of dilatation and deviatoric stretch
gradients are neglected. By its advantages, the MST has been developed for static and dy-
namic of FG microplates [17,22-25]. A brief literature review showed that although many
studies have been performed for static and dynamic analysis of FGP microplates using
different existing shear deformation plate theories and MCT, however, the investigation
based on the MST is still limited, this gap needs to be studied further.

The objective of this paper is to develop a unified framework of higher-order shear
deformation theory (HSDT) for static and free vibration analyses of FGP microplates
based on the MST. Hamilton’s principle is used to derive the governing equations of
motion, which are then solved by bi-directional series-type solutions with hybrid shape
functions. Several important effects such as, thickness-to-MLSP ratio, side-to-thickness
ratio, boundary conditions on the deflections and natural frequencies of FGP microplates
are investigated. Some results given in this paper can be used for the future references.

2. THEORETICAL FORMULATION

Consider a rectangular FGP microplate in the coordinate system (x1,x7,x3) with
sides a x b and thickness h. It is supposed that the FGP microplates are composed of
a metal-ceramic mixture and porosity density whose effective material properties can be
approximated by the following expressions [3,26,27]

Pl = (o= pa) (25E0) e m - B R, 0

where P and P,, are the properties of ceramic and metal materials, such as Young’s mod-
ulus E, mass density p, Poisson’s ratio v; f8 is the porosity volume fraction, 0 < g < 1; p
is the power-law index which is positive and x3 € [-h/2,h/2] .

2.1. Modified strain gradient theory (MST)

The total potential energy of the FGP microplate is obtained by
IT=1IIy+ 11y -1k, (2)
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where Iy, Iy, Ik are the strain energy, work done by external forces and kinetic energy
of the FGP microplates, respectively. Based on the MST, the strain energy of the system
I is given by

My = /V(tfs +pG + T+ my)dV, 3)
where ¢, x, ¢, are strains, symmetric rotation gradients, dilatation gradient and devi-
ation stretch gradient, respectively; o is Cauchy stress; m, p, T are high-order stresses

corresponding with strain gradients x, ¢, 7, respectively. The components of strain ¢;;
and strain gradients &;, 77;jx, Xij are defined as follows

(”n,mjeimn + un,miejmn) ’ (4&)

IS,

Mi,j + uj,i) s gi = Smm,i 7 XZ] =

1
31‘125(

—

Gi + 2€mim) Ojk + (&j + 2€mjm) Oxi] ,

(4b)
where 6;;, €, are Knonecker delta and permutation symbol, respectively; the comma in
subscript is used to indicate the partial derivative with respect to the followed variable.
The components of stress are calculated from constitutive as follows

1 1
Tijk = 3 (&jki + €xij + €ijk) — 5 [(8k + 2€micm) 0ij +

i = Aewelij + 2ueij,  my = 2ulixii, p;=2ul3¢, Tk = 2ul3nik, (5)
where A, y are Lamé constants; /1, I, I3 are three MLSPs.

The work done by a transverse load g of the FGP microplates is given by

Iy = — /qugdA. (6)
A

The kinetic energy of the FGP microplates Ik is expressed by

1 n
M= 5 [ o (xa) (i 43 + i) V. )
14

2.2. Unified kinematics of FGP microplates

A general HSDT kinematic of FGP microplates is derived from [28,29] as follows

up (x1,%2,x3) = uf (x1,x2) + D1 (x3) ud 1 + P2 (x3) @1 (x1,x2),, (8a)
up (x1,%2,%3) = 1 (x1,x2) + D1 (x3) u3, + P2 (x3) @2 (x1,x2),, (8b)
us (x1/x2/ X3) - ug (xlixZ) ’ (8C)

where ® (x3) = H*Y (x3) — x3, D (x3) = H'Y (x3); u, ud and u3, ¢1, 92 are membrane
and transverse displacements, rotations around the x,- and x;-axis at the mid-surface of
FGP microplates, respectively; H® is the transverse shear stiffness of the FGP microplates;

E (x3)
2(1+v)

is a higher-order term whose first derivative satisfies the free-stress boundary condition

X3
Y (x3) = / V{ﬁa) dxs is a shear function; u (x3) = is the shear modulus; f (x3)
0



Static and vibration analysis of functionally graded microplate with porosities based on higher-order shear deformation ... 39

at the top and bottom surfaces of the plates, i.e. f3 ( x3 = i—g = 0. Substituting Eq. (8)

into the strains and strain gradients in Eq. (4), the strains are obtained as follows

e = ¢ 4 @ (x3) V) + @y (x3) e, ) = D3 (x3) ), )
where @3 (x3) = HY 3 with ¥ 3 (x3) = f3 (x3) and,
p(x3)
0 1
8(11) “(1),1 551) “2,11
e = e(zg) = ”(z),z , eV = 8(212) = ”g,zz ’
7&2) un + 13, 'yg) 2u3 1,
@ (10)
€1 P11 0
(2) — @ \_ G) _ gs) g +ug,
& - 822 - 4)2,2 7 &€ - (0) - qoz + uo .
Wg) P12+ ¢2.1 V23 32
The non-zero components of dilatation gradients & = [ ¢1 & C3 } T are given by
=39+ @10V + 028 4 15810 + 5. (11)

The non-zero components of deviatoric stretch gradients #;j are given by
N = ,1(0) + (1)117(1) + q)211(2) + q>3,1(3) + @1,3,7(4) + q>2,3,1(5) + q>3’3,1(6), (12)
where 5 = [ ma22 wss 3msm 3maz2 3221 3tz 3z 3n22s 64123 |
The rotation gradients are expressed as follows
x =X+ PiaxV + Posx@ + @13ax® + Przsx® + 22x ), (13)

with xT = [ x11 x22 2x12 X33 2x13 2x23 |. The components of & 1, x can be seen
more details in Appendix A. Furthermore, the stresses and strains of FGP microplates are
related by constitutive equations as follows

‘ 011 Qu Qur 0 €11 0
=% 0opn 5=]Qn Qn 0 en p=0Q e,
012 0 0 Qs Y12 (14a)
o _Jos | _| Qs O 713 | _ ) (5)
d { 023 } [ 0 Qu Y23 Qe
mi1 i 1 00 0 0O 1( X11 )
Mmoo 0 1 0 0 0 0 XZZ
om0 01000]) e |
m=1{ 0= 2519 001 0 0 o [ Uxslox6 X/
ma3 000010 X23 (14b)
myz | i 0 0 0 0 01 1 U xi3
p1 1 00 ¢1
pP= P2 = 2}11% 010 ‘:2 = 0‘613><3§r
3 0 01 ¢3



40 Van-Thien Tran, Van-Hau Nguyen, Trung-Kien Nguyen, Thuc P. Vo

; - -

T11 1 00 0 O0O0OOUOO 7111
T222 01 0O0O0O0OO0O0OTUO0OTP 1222
12 0010O0O0OO0O0OTO0OTP 112
21 00O01O0O0O0O0OO0OTP 1221
o T331 . 2 000O0O1O0O0O0O00O0O0 1331 o
T Y mm (0000010000 o (- Srhoxaor, (140)
T333 00O0O0OO0OO0ODT1TO0OOQO0OTP 1333
T113 00 O0O0O0OO0ODO0OT1TTO0ODO 1113
1223 00 0O0O0OO0OO0OO0OT1TFPO 1223
L T123 L 00 O0O0OO0OO0OO OO 01 | 1123 )

where a, = 2ul5, oz = 23, 0 = 2pl5, and

E (X3) E (X3) vE (X3)
1—102’ 1—102’ 1—202"7

Qu = Q55 = Qe = = E (%) (15)

Qu = 2(1+0)

Qn = Qu =

2.3. Energy principle

In order to derive the equation of motion, Hamilton’s principle is used

ot
/ " (8T1y + 811y — oTTx) dt = 0, (16)

5]

where 011y, 611y, 011k are the variations of strain energy, work done by external force
and kinetic energy, respectively. The variation of the strain energy of FGP microplates
derived from Eq. (3) as follows

oy = /A(mse + pd& + oy + mox)dA = /A [Mgo)(;s(()) 4+ MWse® 4 M@ 56
+M® 50 4 Mg))(si;(m 4 Mél)(sg(l) L Méz> 5@ 1 Méa) 523 1 Mé‘*) 52)

+ MY x @ + M ax ™ + MPax@ + MPox® + MPox @ + MP oy

M7 + MY sy ) + MPop + MY sy + MPap® + MY sy + MY op©]da,

(17)
where the stress resultants are given by
h/2 , h/2
(MO MO M) = [ (1,0, 00) 0dzs, MO = [ @50V, (182)
~h/2 ~h/2

h/2
0 1 2) +s(3) nald
(M( ),Mé ),Mé ),Mé ),Mé )) = /h/2 (1, @1, Dy, Dy 3, Do 3) pdas, (18b)
h/2
(M;(CO),MQ),M;(CZ),M?),M;(;L),Mgf)) = /h/z (1, @13, P23, D133, P23z, P2) mdxs, (18¢)

h/2
0 1 2 3 4 5 6
Mr(] ),M,(7 )’1\,11(7 ),M% ),M1(7 )’M% )/M1(7 )> — '/h/2 (1, q>1,cI>2, @3,@1/3, CI)2’3,CD3,3) I]dX3.
(18d)
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These stress resultants can be expressed in terms of the strains and its gradients (see

Appendix B for more details).

The variation of work done by transverse loads derived from Eq. (6) is given by
STy = — / g6uddA. (19)
A
The variation of kinetic energy 611k derived from Eq. (7) is calculated by
ollg = % / 0 (11,81 + 1,011y + 1130113) AV = % / [Io (1360 + udsu3 + usnd)
14 A
+ I (u§6u3, + u3,6uf + u3sus, + uf,613) (20)
+ Jo (5,6¢1 + ¢16113 1 + 113,00 + 2013 5) + K (9151 + ¢2662)
+1 (#1691 + §161 + 13092 + Pa01t3) + I (01l + 115,0115,) ] d A,

where Iy, I1, I, |1, J2, K> are mass inertias of the FGP microplates which are defined as
follows

h/2
(Io, 1y s Ju, Jo Ko) = [ (101, 0] 02, 0105, 03) pd;, (21)
3. RITZ-BASED SOLUTIONS
Based on the Ritz method, the membrane and transverse displacements, rotations

(u(l), ul, ul, 1, ¢2) of the FGP microplates can be expressed in terms of the series of ap-
proximation functions and associated values of series as follows

ny np ny np

(x1,x2) 2 Z u1;iRi1 (x1) Pj (x2), (x1,x2) E Z UiiR; P> (x2), (22a)
i=1j=1 i=1j=1
n np ny np

(x1,%2) = ) Zusz] (x2), ¢1(x,x2) =) sz; i1 (x1) Pj(x2), (22b)
i=1j=1 i=1j=1
ny np

xl/ xZ Z qu ]2 xZ) (22C)
i=1j=1

where uy;, usij, usij, xij, yi; are variables to be determined; R; (x1), P; (x2) are the shape
functions in x1-, xp-direction, respectively. As a result, five unknowns of the plate only
depend on two shape functions. It should be noted that the accuracy, convergence rates
and numerical instabilities of the Ritz solution depends on the selection of the shape
functions, which was discussed in details in [27-32]. The functions R; (x1) and P; (x2)
given in Table 1 are constructed to satisfy the boundary conditions (BCs) at the plate
edges in which two following kinematic typical BCs are considered

e Simply supported (S): u) = uJ = ¢, = 0atx; = 0,aand 1) = u} = ¢; = 0 at
Xy = 0 b.
e Clamped (C): 1! = u)

ug:q)1:g02:0atx1:O,aandxzzo,b.
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Table 1. Approximation functions of series solutions with different boundary conditions [28]

Approximation functions

Boundary conditions

R] (xl) P] (Xz)
SSSS X1 (a—xl)e’% X2 (b—xz)e’]x_TZ
CCccC X2 (a—x1)? e’]% x5 (b—x2)? e’%
SCSC x1 (a—xp)? e n X2 (b—x2)? et

The combination of S and C on the edges leads to the different BCs, in which SSSS,
SCSC, CCCC in Table 1 are chosen to investigate in this paper. Furthermore, in order
to derive characteristic equations of motion of the FGP microplates, substituting the ap-
proximations in Eq. (22) into Egs. (20), (19), (17) and then the subsequent results into Eq.
(16) lead to

Kd+Md =F, (23)

where d = [ U u uz X y }T is the displacement vector to be determined; K =
K& + KX + K¢ + K" is the stiffness matrix which is composed of those of the strains K¢,
symmetric rotation gradients KX, dilatation gradient K¢, and deviation stretch gradient
K"7; M is the mass matrix, and F is the force vector. These components are given more
details as follows
KOl &2 OB ko4 il5
T2 gé2 KB K4 K
Ké = | TKé® T K83 kB3 KBS | with{ = {e,E, x,n}, (24a)
TG4 Tgi24 TR+ g4 K45
TKE T2 TR TRH5 K55

Ml 0 M3 M4 0
0 M2 M2 0 M

M= | ™™MB ™2 M»® M* M |, (24b)
TM14 0 TM34 M44 M45
0 ™2 T™M® TM% M

F=[0 0 fo0o0], (24c)

where the components of mass matrix M, stiffness matrix K* and KX can be seen in [29].
The components of stiffness matrix K¢, K” and load vector F are give in Appendix C.

It is worth to notice that for static analysis, the static responses of the FGP microplates
can be obtained from Eq. (23) by ignoring inertia terms. For free vibration analysis, by
denoting d(t) = de™' where w is the natural frequency of the FGP microplates and
i? = —1 is imaginary unit, the natural frequencies can be derived from the following
characteristic equation: (K — w?M) d = 0.
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4. NUMERICAL RESULTS

In this section, numerical examples are carried out to investigate static and free vibra-
tion behaviours of FGP microplates with different BCs in which the Reddy’s shear func-
tion [33] f (x3) = x3 — 4x3 /3h?* is employed. They are assumed to be made of a ceramic-
metal mixture whose material properties are given as follows: Al,Os (E. = 380 GPa,
pc = 3800 kg/m>, v. = 0.3) , Al (E,, = 70 GPa, p,, = 2702kg/m> v, = 0.3). For sim-
plification purpose, all three MLSPs are assumed to have identical values I} = I, = I3 = I
and they should be determined by experimental works. For convenience, the following
normalized parameters are used in the computations

_ 10E.h3 ab _ wa? Oc
w = WU’S <2, 2) 7 w = T E (25)

Table 2. Convergence study of series solution of Al/Al,O3 FGP microplates with
different boundary conditions (a/h =10,p =5, = 0.1,h/] = o)

Number of series n = ny = np
2 4 6 8 10 12 14

Normalized center deflection
SSSS 1.1801 1.2159 1.2191 1.2182 1.2184 1.2183 1.2184
SCSC 0.7287 0.7136 0.7022 0.7016 0.7015 0.7016 0.7016
CCcCcC 0.4870 0.4863 0.4824 0.4828 0.4822 0.4827 0.4826
Normalized fundamental frequency
SSSS 3.4897 3.4630 3.4560 3.4567 3.4551 3.4574 3.4573
SCSC 5.1482 4.6407 4.6179 4.6148 4.6224 4.7171 4.7172
CCcCcC 6.0479 5.9494 5.9035 5.8888 5.8843 5.8837 5.8838

Solution

In order to verify the convergence of present solutions, Table 2 shows the transverse
center displacement and fundamental frequency of Al/Al,O3 FGP square microplates
under a sinusoidal distributed load and with a/h = 10,p = 5,8 = 0.1, h/l = oco. The
results are calculated with three types of boundary conditions (SSSS, SCSC, CCCC) and
the same number of series in x;1- and x,-direction (n; = ny = n). It is observed from
Table 2 that the solutions converge very quickly, and the number of series n = 12 can
be considered as a convergence point of the static and dynamic responses of the FGP
microplates. Thus, this number of series will be used for numerical computations.

4.1. Static analysis

In order to verify the accuracy of the present FGP microplate model in predicting
static behaviours, the first example is performed on the simply supported FG square
microplates subjected to sinusoidally distributed loads without porosity effect (f = 0).
Various values of the power-law index p, length-to-thickness ratio a/h, and thickness-
to-MLSP ratio /1/1 are considered for static responses of Al/Al,O3 FG microplates. The
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obtained results are reported in Tables 3 and 4, and compared with those derived from
Thai et al. [22], Thai et al. [25] using the MST, isogeometric approach and HSDT, Zhang
et al. [34] using the MST, Navier method and HSDT. It can be seen that there are good
agreements between the models for different BCs, material distribution and size effects,
which shows the accuracy of present approach for static behaviours.

Table 3. Normalized transverse center displacements of FGP microplates under sinusoidal load
(B =0, SSSS)

h/l
0 20 10 5 2 1

5 0.5 Present 05177  0.4957 04411 03065 0.1011  0.0292
MST [22] 05176  0.4965 0.4426 03098 0.1018  0.0303

RPT [34] 0.5198 0.4983 04435 03086  0.0997  0.0293

IGA [25] 05177  0.4975 04457 03153 0.1045 0.0310

1 Present 0.6688  0.6387 05625 03860 0.1226  0.0353
MST [22] 0.6688  0.6399 05670  0.3908  0.1252  0.0369

RPT [34] 0.6688 0.6396 05658 0.3879  0.1223  0.0357

IGA [25] 0.6688 0.6412 05709 03977 0.1286  0.0378

2 Present 08672  0.8261  0.7256  0.5021  0.1521  0.0442
MST [22] 0.8671 0.8292 0.7332 05021  0.1580  0.0460

RPT [34] 0.8671  0.8286  0.7313 0.4980 0.1544  0.0447

IGA [25] 08671  0.8307 0.7379  0.5107  0.1627  0.0475

4 Present 1.0411 09899  0.8681  0.6024  0.1898  0.0552
MST [22] 1.0409 09977 0.8875 0.6159 0.1964  0.0573

RPT [34] 1.0408 09967 0.8843 0.6095  0.1921  0.0558

IGA [25] 1.0409 09994 0.8927 0.6263  0.2034  0.0597

10 Present 1.2279 11681  1.0282  0.7443  0.2455  0.0728
MST [22] 1.2276  1.1811 1.0609 0.7548  0.2510  0.0743

RPT [34] 12269 11790  1.0557  0.7455 0.2454  0.0724

IGA [25] 12276 11829  1.0668 0.7678  0.2614  0.0781

10 0.5 Present 0.4538 0.4361 03884 0.2747  0.0895  0.0263
MST [22] 0.4537 0.4355 03887 0.2723  0.0884  0.0260

1 Present 0.5890  0.5646  0.5003 03479  0.1106  0.0322
MST [22] 05890 0.5640 0.5004 0.3453 0.1095  0.0320

2 Present 07572  0.7258  0.6426  0.4463  0.1418  0.0412
MST [22] 0.7573  0.7253  0.6439  0.4446  0.1407  0.0409

4 Present 0.8814 0.8475 0.7588  0.5404 0.1797  0.0531
MST [22] 0.8815 0.8480 0.7614 05405 0.1784  0.0526

10 Present 1.0086 09739  0.8808  0.6497  0.2325  0.0707
MST [22] 1.0087 09755 0.8879 0.6535 0.2298  0.0694

a/h p Theory
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Table 4. Normalized transverse center displacements of FGP microplates under sinusoidal load
witha/h =10

h/l
0 20 10 5 2 1

cccc 05 Present 01755 0.1677 0.1488 0.1032  0.0331  0.0099
MST [22] 0.1747 0.1675 0.1492 0.1042 0.0340  0.0100

IGA [25] 0.1773 - 0.1521  0.1068 0.0349 0.0103

1 Present 02271  0.2165 0.1909 0.1306  0.0412 0.0121
MST [22] 0.2261 0.2163 0.1951 0.1349 0.0419  0.0123

IGA [25]  0.2295 - 0.1915 0.1318 0.0430 0.0126

2 Present 02936  0.2794 0.2456 0.1673  0.0529  0.0158
MST [22] 0.2922  0.2794 02472 0.1694 0.0532  0.0155

IGA [25]  0.2967 - 0.2517 01733  0.0547  0.0159

5 Present 03631 0.3452 0.3047 0.2124 0.0706  0.0211
MST [22] 0.3609 0.3466 0.3100 0.2182  0.0712  0.0209

IGA [25] 0.3676 - 0.3161 0.2233 0.0734 0.0216

10 Present 0.4068 0.3873 0.3436 0.2437 0.0838  0.0252
MST [22] 0.4041 0.3893 0.3582 0.2523  0.0854  0.0254

BCs p Theory

IGA [25] 0.4121 - 0.3510 0.2584 0.0884  0.0265

SCSC 0.5 Present 0.2585  0.2477  0.2198 0.1514 0.0477 0.0139
IGA [25] 0.2472 - 0.2122  0.1492 0.0488 0.0144

1 Present 03349 03200 0.2823 0.1917 0.0591 0.0171
IGA [25]  0.3201 - 0.2724  0.1886  0.0602  0.0176

2 Present 04318 0.4126 0.3643 0.2480 0.0769  0.0221
IGA [25]  0.4133 - 03513 0.2425 0.0768  0.0223

5 Present 05256  0.5055  0.4540 0.3218 0.1059 0.0311
IGA [25]  0.5086 - 0.4389 0.3118 0.1035 0.0306

10 Present 0.5849 0.5646 0.5118 03720 0.1280 0.0382
IGA [25]  0.5685 - 04961 03604 0.1246  0.0375

Moreover, in order to investigate effects of porosity B, material parameter p, side-to-
thickness ratio a/h, size effects /] and boundary conditions on the static responses of
FGP microplates, Table 5 presents the normalized center transverse displacements with
various configurations. The variations of center deflections with respect to a/h and h/1
are also plotted in Fig. 1. It can be seen that the transverse displacements increase with
increase of the p and /1. The graph in Fig. 1(b) reveals that the deflections vary gradu-
ally for h/1 < 10 and from h /I = 25 the curves become flatter and the results tend to be
closed to those obtained from the classical theory (1/] = o), which explains that the size
effects on deflections of FGP microplates are not significant from h /1 > 25.



46 Van-Thien Tran, Van-Hau Nguyen, Trung-Kien Nguyen, Thuc P. Vo

Table 5. Normalized transverse center displacements of FGP square microplates under sinusoidal
load with different boundary conditions

h/l
() 10 5 2 1

SSSS 10 0.1 0.5 0.5111 0.4342 0.3025 0.0962 0.0280
0.6947 0.5831 0.3964 0.1218 0.0351
0.9578 0.7987 0.5365 0.1622 0.0464
1.2183 1.0372 0.7244 0.2345 0.0687
10 1.3565 1.1739 0.8523 0.2968 0.0891

0.2 0.5 0.5822 0.4903 0.3356 0.1043 0.0301
0.8456 0.6983 0.4610 0.1361 0.0387
1.3214 1.0690 0.6800 0.1909 0.0536
1.9318 1.5884 1.0391 0.3052 0.0870
10 2.1828 1.8440 1.2843 0.4187 0.1231

SCSC 10 0.1 0.5 0.2906 0.2449 0.1662 0.0512 0.0149
0.3939 0.3278 0.2177 0.0653 0.0187
0.5436 0.4503 0.2971 0.0882 0.0249
0.7016 0.5956 0.4110 0.1301 0.0373
10 0.7870 0.6844 0.4904 0.1641 0.0483

0.2 0.5 0.3305 0.2758 0.1841 0.0552 0.0159
0.4781 0.3909 0.2525 0.0729 0.0206
0.7462 0.5979 0.3749 0.1033 0.0288
1.1042 0.9064 0.5905 0.1675 0.0476
10 1.2676 1.0785 0.7459 0.2348 0.0674

CCCC 10 0.1 0.5 0.1969 0.1640 0.1100 0.0335 0.0101
0.2663 0.2191 0.1439 0.0426 0.0128
0.3682 0.3012 0.1962 0.0573 0.0164
0.4827 0.4036 0.2735 0.0844 0.0244
10 0.5480 0.4671 0.3281 0.1070 0.0315

0.2 0.5 0.2233 0.1842 0.1216 0.0362 0.0104
0.3219 0.2603 0.1664 0.0475 0.0135
0.5018 0.3975 0.2462 0.0676 0.0210
0.7550 0.6090 0.3888 0.1106 0.0313
10 0.8832 0.7357 0.4969 0.1526 0.0440

BCs a/h B p

g1 N = Q1 N = Q1 N = a1 N = g1 N =

g N =
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Fig. 1. Variation of normalized center deflection with respect the power index p
and thickness-to-length scale /1 of FGP microplates (8 = 0.2,a/h = 10)

4.2. Free vibration analysis

In order to study the accuracy of present solutions in predicting vibration responses,
Tables 6 and 7 provide the fundamental frequencies of Al/Al,O3 FGP microplates with-
out porosity effects (B = 0) in which the solutions are computed for various configura-
tions. The obtained results are compared with those derived from Thai et al. [22] and
Thai et al. [25] based on the MST, IGA and HSDT, Zhang et al. [34] based on the MST and
Navier procedure and a refined HSDT. It can be seen that there is no discrepancy between
models. The fundamental frequencies decrease with the increase of p as expected.

Table 6. Normalized fundamental frequencies w = wh+/p./E; of Al/Al,O3 FGP square
microplates (8 = 0, a/h = 10,SSSS)

N h/l
P eory oo 10 5 2 1

0 Present 00577 00615 00726 01250  0.2283
MST[22] 00577 00619 00729 01254 02297

RPT [34] 00577 00619 00730 01258  0.2309

IGA [25] 00577 00617 00725 01240  0.2268

0.5 Present 00490 00529 00626 01099  0.2035
MST[22] 00490 00529 00633 01110  0.2047

RPT [34] 00489 00529 00632 01113 02057

IGA [25] 0.0490 0.0528 0.0629 0.1098 0.2023
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" h/l
P fheory 0 10 5 2 1
1 Present 0.0441 0.0475 0.0574 0.1014 0.1884
MST [22] 0.0442 0.0479 0.0577 0.1024 0.1896
RPT [34] 0.0442 0.0480 0.0578 0.1028 0.1907
IGA [25] 0.0442 0.0478 0.0573 0.1013 0.1873
2 Present 0.0401 0.0431 0.0520 0.0926 0.1722
MST [22] 0.0401 0.0435 0.0523 0.0930 0.1722
RPT [34] 0.0401 0.0435 0.0524 0.0933 0.1731
IGA [25] 0.0401 0.0434 0.0520 0.0918 0.1698
MST [22] 0.0377 0.0404 0.0477 0.0822 0.1508
RPT [34] 0.0377 0.0405 0.0478 0.0825 0.1514
IGA [25] 0.0377 0.0403 0.0474 0.0810 0.1482
10 Present 0.0364 0.0388 0.0452 0.0757 0.1360
MST [22] 0.0363 0.0387 0.0451 0.0761 0.1384
RPT [34] 0.0364 0.0388 0.0453 0.0764 0.1390
IGA [25] 0.0364 0.0387 0.0449 0.0750 0.1359
Table 7. Normalized fundamental frequencies of Al/Al,O3 FGP square microplates
(B=0,a/h =10,CCCC and SCSC)
h/l
BCs p Theory
0 20 10 5 2 1
CCCC 0.5 Present 84735 8.6614 9.1920 11.0307 18.9020 35.1640
IGA [25]  8.4405 - 9.1227 10.8954 19.0701 35.1215
1 Present 7.6782 7.8132 8.3908 10.0530 17.6636 32.3192
IGA [25] 7.6251 - 82766  9.9597  17.6422  32.6292
2 Present 69176 7.1106 7.5746  9.0783 159206 28.8231
IGA [25] 6.8944 - 74923  9.0367  16.0977  29.8609
5 Present  6.4231 6.5519 6.9710 83300 13.9971 25.9460
IGA [25] 6.3722 - 6.8823  8.2026  14.3324  26.4157
10 Present 6.1199 6.2784 6.6505 7.8617  13.0441 23.9971
IGA [25] 6.1039 - 6.5602  7.7407  13.2706 24.2754
SCSC 0.5 Present 6.7197 6.8676 7.2931 87900  15.6599  29.0008
IGA [25] 6.9031 - 74556  8.8961  15.5600 28.6567
1 Present  6.0650 6.2057 6.6094  8.0210 14.4368 26.8247
IGA [25] 6.2329 - 6.7605  8.1283 143915 26.6161
2 Present 54955 5.6222 59858  7.2578  13.0467 24.2396
IGA [25] 5.6405 - 6.1230 73744 13.1146 24.3082
5 Present  5.1361 5.2381 55323  6.5758 11.4606 21.0871
IGA [25] 5.2361 - 56429  6.7021  11.6480 21.4179
10  Present 49452 5.0338 5.2903 6.2080 10.5865 19.3316
IGA [25] 5.0254 - 53868 6.3288  10.7777  19.6645
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Table 8. Normalized fundamental frequencies of Al/Al,O3 FGP square microplates

h/l
) 10 5 2 1
SSSS 10 0.1 0.5  4.8469 5.2465 6.2753 11.1444 20.5884

BCs a/h B p

1 4.2815 4.6668 5.6497 10.2161 19.0334

2 3.7640  4.1238 4.9947 9.1029 16.9999

5 3.4574 3.6783 4.4653 7.8075 14.4907

10 3.3327  3.5350 4.1840 7.0993 12.8651

0.2 05 47972 5.2009 6.1126 11.1001 20.1158
1 41121 4.5268 5.5541 10.0543 19.0057

2 3.4064  3.7713 4.7471 8.9419 16.8823

5 2.9323 3.2158 3.9832 7.3159 13.7288

10 2.8148 3.0352 3.6550 6.4101 11.7388

SCSC 10 0.1 0.5 6.6598 7.2591 8.7147 15.3799 28.4118
1 5.8920 6.4631 7.9308 14.1016 26.1753

2 5.1741 5.6891 7.0084 12.5850 23.7134

5 4.7171 5.1198 6.1693 10.9865 20.3606

10 4.5305 4.8659 5.7523 9.9342 18.2235

0.2 0.5 6.5990 7.1277 8.5988 15.1299 28.1844
1 5.6709 6.2750 7.7094 14.0535 26.0222

2 4.6990  5.2527 6.6405 12.5620 23.6336

5 4.0124  4.4345 5.5079 10.2385 19.2228

10 3.8229 4.1489 4.9977 8.8931 16.4769

cccc 10 0.1 0.5 8.3865 9.1064 11.0009 18.7157  35.0700
1 74713 8.1995 9.9376 17.5254 32.1417

2 6.5451 7.2033 8.8372 15.7657  28.6778

5 5.8837  6.1920 7.8150 13.3725 23.7300

10 5.6264 6.1831 7.3008 12.0451 21.4739

0.2 0.5 8.3202 9.1037 11.0001 18.6797  34.9638
1 7.1684 7.9717 9.7343 17.3071 32.1207

2 5.9501 6.6362 8.3403 15.2109 28.4556

5 5.0257  5.6144 6.9379 119968  20.3562

10 47414  5.2673 6.3223 10.5215 19.6228

The effect of p on the natural frequencies of Al/Al,O3 FGP microplates is also plot-
ted in Fig. 2(a) for h/1 = 1,2,5,10,20,a/h = 10 and B = 0.2. There exist large deviations
of these curves, which indicate significant size effects. Moreover, the variations of fun-
damental frequencies with respect to /1/I are displayed in Fig. 2(b). It is observed that
the results decrease with the increase of /1/I up to h/l = 10 and then the curves become
flatter which indicates the size effects can be neglected.
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Fig. 2. Variation of normalized fundamental frequencies with respect the power index p and
thickness-to-MLSP ratio /1 (a/h = 10,8 = 0.2)
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Fig. 3. Size effect of the MCT and MST for the normalised fundamental frequencies with respect
to the length scale-to-thickness ratio h /1 ( = 0.2,p = 5,a/h = 10)

In order to study further the size effects of vibration problems, Fig. 3 illustrates the
ratio of fundamental frequencies computed from the MST over the MCT, which is ex-
pressed with respect to h/I,p = 5,8 = 0.2,a/h = 10 and different boundary conditions.
It can be observed that the MST with three MLSPs produces frequencies larger than the
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MCT with one MLSP, especially when the Static and vibration analysis of functionally
graded microplate with porosities based on higher-order shear deformation and modi-
fied strain gradient theory microplate thickness is close to the MLSP. It emphasizes the
importance of the consideration of three components e.g. the dilatation, deviatoric stretch
and symmetric part of rotation gradient tensor in the MST rather than only the symmetric
part of rotation gradient tensor in the MCT when dealing with microplates. As expected,
by increasing the size scale, the difference between the theories is decreased.

5. CONCLUSIONS

A unified higher-order shear deformation theory and modified strain gradient the-
ory have been developed in this paper for static and free vibration analyses of func-
tionally graded porous microplates. The equations of motion are derived from Hamil-
ton’s principle and series-type approximation with exponential shape functions. Numer-
ical examples are presented to investigate effects of side-tothickness ratio, thickness-to-
material length scale parameter ratio and boundary conditions on the deflections and
natural frequencies of FGP microplates. The obtained results show that the size effects
lead to an increase in the stiffness of the FGP microplates, consequently it decreases
their transverse displacements and increases their natural frequencies. Significant dif-
ferences of the present theory and modified couple stress theory are observed when the
microplate thickness and MLSP is the same dimension, it shows that the dilatation and
deviatoric stretch should be accounted for computations of microplates. The present the-
ory is found to be accurate and efficient in predicting static and dynamic behaviours of
FGP microplates.
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APPENDIX A

The non-zero components of dilatation gradients in Eq. (11) are defined by
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The non-zero components of deviatoric stretch gradients 7;;x in Eq. (12) are given by

1
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These components can be expressed in terms of the displacements as follows
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The components of rotation gradients in Eq. (13) are expressed as follows

;

0 0
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0 0 0 0
U3y — Uz 1y 1 _ 1) Uz —Uzp
7 X — A
0 0
0 0
Up11 — U112 0
0 0
Up1p — Ui 0 )

— @21
P12
P11 — P22

P21 — P12
0

0

(A.4a)
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APPENDIX B

The stress resultants of the FGP microplates are expressed in terms of the strains and

its gradients as follows
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where the stiffness components of the FGP microplates are defined as follows
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APPENDIX C

The components of stiffness matrix K¢, K" and load vector F are defined as follows

11 12
KEI _ 4 (T.33SQO+T.22511), K = A% (TS + TSY ),

ikl ikl

Kf = (15 o5y + s,

Kfﬁf = B (Tikss’l + T 5'1 ) , Ki}j = B (T S ‘(1)351311) ,

Ky = A (TSR + TR8F),  KGy = BF (TR S+ T S3 + TS + TS ),
Kfﬁff = B ( ikl

g13 §25 _ pé 700633
s), Ky = BE (TSR +TST),
S+ TRSH + TR + TSR + TRs)) (C.1a)
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44 N c
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€55 ¢ ¢
K& = HETRSY + HETHLS% + HLTQ0S%,
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A General Framework of Higher-Order )
Shear Deformation Theory for Free s
Vibration Analysis of Functionally

Graded Microplates

Van-Thien Tran and Trung-Kien Nguyen

Abstract This paper proposes a unified higher-order shear deformation microplate
model for vibration analysis of functionally graded materials. The theory is devel-
oped from fundamental equations of the elasticity theory and modified couple stress
theory, from which many different frameworks of size-dependent plate models are
recovered. In order to capture the size effects, the modified couple stress theory
with one independent length-scale parameter is used. The solution field is approxi-
mated by bi-directional series in which hybrid shape functions are proposed, then the
stiffness and mass matrix are explicitly derived. Numerical results are presented for
different configurations of material distribution, side-to-thickness ratio, size-scale-
thickness ratio and boundary conditions on the natural frequencies of functionally
graded microplates.

Keywords Series-type solutions + Vibration * Functionally graded microplates -
Modified couple stress theory

1 Introduction

The recent development of functionally graded (FG) microplates with continuous
variations of materials in a required direction led to a large potential application
in engineering field. However, the behaviours of these structures at small scales
require advanced computational models to capture size effects. The earlier experi-
mental works revealed that the classical elasticity theory could not accurately predict
responses of microstructures at small scale, advanced computations theories with
length scale parameters have been therefore developed with different approaches. A
number of researches has been performed to accurately predict static and vibration
behaviours of FG microplates in which the modified coupled stress theory (MCT) is
mostly used. The MCT initiated by Yang et al. [1] is known as the simplest theory
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accounted for the size effects in which only one material length scale parameter asso-
ciated with rotation gradient is accounted in the constitutive equations. Based on the
MCT, many researches have been developed for static and dynamic analysis of FG
microplates, only some representative references are herein cited. Tsiatas [2] inves-
tigated static analysis of isotropic micro-plates using classical plate theory (CPT).
Ma et al. [3] analysed bending and free vibration responses of FG microplates using
first-order shear deformation theory (FSDT). Reddy and Kim [4] presented geometri-
cally nonlinear analysis of FG microplates based on a higher-order shear deformation
theory (HSDT). Thai et al. [5, 6] studied size-dependent effects on static and vibration
responses of FG microplate by using the HSDT. He et al. [7] used a refined HSDT
for analysis of FG microplates. A brief literature review on the behaviours of FG
microplates showed that though there is a number of studies have been performed in
predicting static and dynamic behaviours of the FG microplates using the MCT with
different plate theories, this complicated problem needs to be studied more further.

The objective of this paper is to propose a unified size-dependent plate model based
on a general HSDT framework and MCT for analysis of FG materials. It is developed
from fundamental equations of the elasticity theory and modified couple stress one.
The governing equations of motions are derived from Lagrange’s equations and
then bi-directional series-type solutions with hybrid shape functions are proposed.
Numerical results are presented for different configurations of material distribution,
side-to-thickness ratio and boundary conditions on natural frequencies of the FG
microplates. New results presented in this study can be of interests to the scientific
and engineering community in the future.

2 Theoretical formulation

Consider a FG rectangle microplate in the coordinate system (x, x,, x3) with sides
a x b and thickness & as shown in Fig. 1. The plate is composed of a mixture of
ceramic and metal materials whose properties vary continuously in the thickness
direction. The effective material properties of FG microplates can be approximated

_Ceramic

Metal

Fig. 1 Geometry of a FG microplate
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by the following expressions [6, 7]:

P
P(x3) = (P — P,n>(2x32h+ h) + P, (1)

where P, and P,, are the properties of ceramic and metal materials, respectively, such
as Young’s moduli E, mass density p, Poisson’s ratio v; p is the power-law index
which is positive and x3 € [—h/2, h/2].

2.1 Modified couple stress theory

The total potential energy of the FG microplate is obtained by:
M=y - Mg 2)
where I1y, [1x are the strain energy and kinetic energy of the FG microplate,

respectively. Based on the MCT, the strain energy of the system IIy is given by
(1, 6]:

Iy =/(08+mx)dV 3)
v

where e, x are strains and symmetric rotation gradients, respectively; o is Cauchy
stress; m are higher-order stress corresponding with strain gradients y. The
components of strain ¢;; and strain gradients y;; are defined as follows:

1
gij = E(Mi,j +uji), xij = Z(un,mjeimn + Un,mi€jmn) 4)

where e;,,, are Knonecker delta and permutation symbol, respectively. The compo-
nents of stress are calculated from constitutive equations as follows:

0ij = Aewdij + 2ueij, mij = 2ul’y; )

where A, u are Lamé constants; [ is length scale parameter. The kinetic energy of
the FG microplate [Tk is expressed by:

1 .
Mg = 5/ p(x3) (i + a3 + i3)dV (6)
|4

where p(x3) is mass density of the FG microplate; tt; = wuy,, ity = uy, U3 = Uz,
are velocities in x| —, xp— and x3— directions, respectively.
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2.2 Unified kinematics of FG microplates

For simplicity purpose, the effects of transverse normal strain are neglected in the
sequel, i.e. u3(xy, x2, xX3) = ug(xl, X;) where ug’(xl, X7) is transverse displacement
at the mid-surface of the FG microplate. Moreover, it is supposed that the transverse
shear stresses are expressed in terms of the transverse shear forces as follows:

o13 = [3(x3)Q1(x1, x2), 023 = f3(x3)Q2(x1, X2) @)

where f(x3) is a higher-order term whose first derivative satisfies the free-stress
boundary condition at the top and bottom surfaces of the plates, i.e. f3 (x3 = :I:%) =
0; the comma in subscript is used to indicate the derivative of variable that
follows. Additionally, transverse shear strains are linearly related to the membrane

displacements u; (x1, X2, X3), u(x1, X2, x3) and transverse one ug(xl, x7) by:

o3 f30i on  f30
Vi3 = U3 +u(3),1 =—= L VB =U3 +u(3),2 === , (B
1 I I I

where w(x3) = zfl(fu)) is the shear modulus. Furthermore, integrating Eq. (8) in x3—

direction leads to a general displacement field of the FG microplate as follows:

i (X1, X2, x3) = uf(x1, x2) — x3u3 | + W(x3) Q1 (x1, x2) (92)
wa (X1, X2, X3) = un(x1, x2) — X313 5, + W (x3) Qa(x1, X2) (9b)
uz(x1, X2, x3) = u3(x1, x2) %)
X3
where W(x3) = f M{;)dxy Moreover, it is known that the shear forces can
o K

be expressed in terms of the rotation (¢i, ¢;) and gradients of the transverse
displacement as follows:

Q1(x1,x2) = H*(¢1 + 3 }), Q2(x1,x2) = H* (2 + 13 ,) (10)
where H*® = k* fi’{lzz W (x3)dx3 is the transverse shear stiffness of the FG microplates;
k* = 5/6 is shear coefficient factor. Substituting Eq. (10) into Eq. (9) leads to a

general higher-order shear deformation FG microplate theory as follows:

y(x1, X2, X3) = U (x1, X2) + D1 (x3)ud | + P2(x3)gi(x1, x2)  (11a)

Uz (X1, X2, X3) = uy(x1, x2) + ®1 (x3)u3 5 + P2(x3)@2(x1, X2) (11b)
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us(x1, X2, x3) = u3(x1, X2) (11c)

where ®@(x3) = H W (x3) — x3, Py(x3) = H W (x3). Subsituting Eq. (11) into the
strains and strain gradients in Eq. (4), the strains &’ = [e(i) e(“')] are obtained as
follows:

e =60+ @1(x3)e + 0y(x3)e?, €V = D3(x3)e? (12)
where ®3(x3) = H*W 3 with W 3(x3) = % and,
0) (1)
& 0 & 0
Q) ;01> i € ;11) u
— _ 0 _ _ 0
€ =1n (T o) o & =10 (T “3622 ,
0
yl(g) Uy, +uy, V1(zl) 2u3 |,
@ (13a)
8121 1,1
2
e =136 1 = 92
y1(22> Y12+ @21
0) 0
u
e® = {”1@} = {W + g»l} (13b)
Y23 P2 tusz,
Moreover, the symmetric rotation gradients are given by:
| _
Xij = 5(91',]' +6;.) (14)
where 6; is determined in terms of the displacements u; as follows:
vy 1 1 0 0
6= 5(”3,2 —uy3) = §(u3’ 20 — @y 3u3,2° — Dy 300) (15a)

| 1
0, = 5(“1,3 —u3, 1) = 5(—u3, 194 @) 3u3, 1° + @5 501) (15b)

— 1 1
0; = E(ul1 —u,2) = E[142, 19— up, 2° + @y (21 — 910)] (15¢)
Substituting Eq. (15) into Eq. (13), the rotation gradients are expressed as follows:
X=XV + 03"+ Poax® + 01530 + Przzx@ + 0oy (16)

where x” = [ x11 x22 2x12 %33 2x13 223 | and,
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us, 12° —us, 12° —¢2,1
—us, 120 us, 120 P1,2
x O = 1 ”(3),22 - ”(3),11 V= l “(3),11 - “(3),22 x® = 1 P11 — P22
2 0 2 0 21 o1 — 12
“(2),11 - “(1},12 0 0
“(2).12 - ”(1),22 0 0
(17a)
0 0 0
0 0 0
1 0 1 0 1 0
®— - @ _ & _ - 17b
X 51 o (X 21 o (X > 0 (17b)
—u2,2 —¢ ©2,11 — @1,12
“(3),1 ¥1 $2,12 — $1,22

Furthermore, the stresses and strains of FG microplates are related by constitutive
equations as follows:

) 11 011 Q1 0 €11 o
0V ={ont=|0n0n 0 en (= QVe",
on 0 0 Qedly2 (18a)
o _ Joi| _|Qss O iH )/13} 0 ()
o — = = &
023} |: 0 Qulyn Q:
mi 1000007 | X1
Mmoo 010000 X22
o mip - 2 001000 X12 _
m= s =2ul; 000100 e =, Isex (18b)
moy3 000010 X23
s (000001 ]|

EG E E(

where o, = 2ul%, O = 29,00 = £59) 0, = ) 04y = Oss = Qe =
— Ex)

M= 505"

2.3 Energy Principle

In order to derive the equation of motion, Hamilton’s principle is used:

5]
/ (8T1y — 8Tg)dt = 0 (19)
1
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where 61y, 1k are the variations of strain energy and kinetic energy, respectively.
The variation of the strain energy of FG microplates derived from Eq. (3) as follows:

STy = / (08 + méx)dA = / [MP66@ + M{Vse™ + MP 5@ + M 56
A A
+M;O)5X(O) 4 M;I)SX(I) + M;2)5X(2) + M;3)8X(3) + M;4)3X(4) + M;S)5X(5)]dA
(20

where the stress resultants are given by:

h/2 h/2
(MO M MP) = f (1, @1, ©2)0 Vdxs, MO = f 030 “dx; (21a)
h/2 Y
h/2
(D P D P M) =/l/2 (1, @13, @3, B1 33, D333, a)mdxs  (21b)
—h

These stress resultants can be expressed in terms of the strains and its gradients
as follows:

MO A° B B: 0 e®
M) BEDDEO || e
MO [T BDiE 0 |]e® (222)
MO 000 A [e®
MO) [A*B"B'B B, B! |[,O
Mo | BB D EEF ||
M BID/H, G I' J |]|,® (22b)
= =X — =X =X —
M B E‘G'D D, K' || x?
M B,E/ T D HL |[«V
20 I v G A A

where the stiffness components of the FG microplates are defined as follows:

h/2 /2
(A, B, D, HE, BE, DE) = / (1,<1>1,<1>§,<1>§,q>2,<1>1<1>2) Daxs, AC = fd>§Q§°)¢1x3
—h/2 —hj2
(23a)
h/2
X R R RN R ORX —
A*,B".B;.B ,B,,Bf = (1, @13, P23, P13z, P33, Pa)aryloxedxs (23b)
)
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)2
<5X,55,FX,E5,F§>= / D1 53(P13, Doz, P13z, Pa3z, Po)ay Loxedars
)
(23¢)
)2
=y =y —
(Hf,GS,IX,JX>= / Dy.3(P23, 133, P33, Po)ory oxedars (23d)
)
h/2
—X =X —y =X —
(D »Ds»Kszs’LX»H§)= f (¢i33~4’1,334’2,33,4’1,33%’4’%,33,432,334’2&%)
—ij2
aylexedxs (23e)

The variation of kinetic energy 8 [ derived from Eq. (6) is calculated by:

1
STk = 5/,0(1215111 + updiiy + uzduz)dV
\%4

1 05:0 | 050, -05:0 050 0 520, :05-0 0 5:0
= E/A[I()(uléul-i—uz&uz +u38M3)+11 (L¢18u3,1+u3’15u1+u26u3’2+u3’zéuz) (24)

5 (i, 1001 + 91808 | + S 802 + 02005 5) + K2 (#1861 + $2892)

i (u‘{a(pl + 1609 + i85 + q‘:zaug) +h (ug’,]augyl n ug,zﬁdg)g)]dA

where Iy, 1, I, Jy, J2, K, are mass components of the FG microplates which are
defined as follows:

h/2
(10,11,12,11,12,K2)=/ (1, @y, @7, @, D10y, D3)pdxs  (25)
—h/2

3 Series-Type Solutions of FG Microplates

Based on the Ritz method, the membrane and transverse displacements, rotations
(uf, u3, u, @1, ¢2) of the FG microplate can be expressed in terms of the series of
approximation functions and associated values of series as follows:

ny  ny

(W0, 2200, 01 Ger, 22,0} = Y Y {unij(0), xi; (0 }Rig (1) Pj(x2)  (26a)

i=1 j=1

np ns

{1, x2, 1), @21, x2, 00} = Y " {uaij (1), yis (O} Re(x1) Pya(x2)  (26b)

i=1 j=1
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np ny

W§(ry, x0, 1) = ) > uzii () Ri(x1) Py (x2) (26¢)

i=1 j=I

where uy;;, u2;j, usij, xij, yij are variables to be determined; R;(x;), P;(x;) are the
shape functions in x;—, x,— direction, respectively. As a result, five unknowns of
the plate only depend on two shape functions. It should be noted that the accuracy,
convergence rates and numerical instabilities of the Ritz solution depends on the
construction of the shape functions, which was discussed in details in [8—11]. The
functions R; (x1) and P;(x,) are constructed to satisfy the boundary conditions (BCs)
in which the simply-supported and clamped—clamped BCs are followed:

e Simply supported (S): u§ = u} = ¢ =0atx; =0,aand uf = ud = ¢, =0 at
X2 = 0, b
e Clamped (C): u) =ul =ul = ¢ =¢» =0atx; =0,aand x, = 0,b

The combination of simply-supported, clamped boundary conditions on the edges
of the plate leads to the different BCs as follows: SSSS, CSCS, CCSS, CCCC which
will be considered in the numerical examples. Substituting Eq. (26) into Eqs.(20), (24)
and then the subsequent results into Eq. (15) lead to the characteristic equations of
motion of the FG microplates as follows: Kd+Md = 0 whered = [u] U, U3 X'y ]T
is the displacement vector to be determined; K = K* + KX is the stiffness matrix
which is composed of those of the strains K®, symmetric rotation gradients KX; M
is the mass matrix. These components are given more details as follows:

K{ll K[12 K{13 Kt14 K{IS
TKg“lZ K;22 K{23 K§24 K{ZS

K¢ = | TKiB TKB KB K3 K | with ¢ = {e, x) 27
TK§14 TK{24 TK§34 K§44 K{45
TKg“lS TK{ZS TK{35 TK{45 K{SS

where the components of stiffness matrix K¢ are defined as follows:
ell _ ge 22600 ¢ pllgll prel2 _ 46 02020 e pllgll
Kiji = AnTi Si + Ass T Sji» Kijip = ATy Sji 4 AgeTir S

el3 _ pe 422 c00 e 102 20 e mll oll
Ko = BT ST + BLTR ST + 2B TS|,

eld __ pe 22 00 & 11 ¢l1 el5 _ pe 02 ¢20 & 11 @11
K = BT S + BeooTix Sji - Kijir = BT Sii + Byeo T S

£22 _ 4e 700022 | ae pllall pe23 _ pe 720002 | pe 7700 022 e 1l ol
Kiiii = ATy Si7 + AeeTix Sir» Kijir = BiaTiy Sji + BTy Sip +2Bee Ty S

24 _ pe 120002 | pe pllall pe25 _ pe 0022 | pe pllcll
Kii = B Ti Sii + Byoo Ti Sji» Kijir = B Ty Sii + BygeTi S
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£33 & 22 00 e (02 ¢20 20 @02 £ 00 22
K = DL TSy + Dy (T2 S5 + T Sir) + D5, Ty S +4Dg T, S
00 11 71100
+A LTy Sj) + Asss T Sji
s34 _ s 720 g02 Tiigl
Kiia = Din T, S + D5 TS + 2D5ee Ty Sy + Alss Ty S
&35 DE Dé 00 ¢22 A€
Kiia = DT, S Dy, TS5 + 2D Tt S AT, S
& 00 4 H 11 ¢ll 00
Kz;kl = H;T, S o6 Lik Sji + Alss Ty S
45 02,620 55 00 (22 11 11 00!
KE = HOnTe S5 + HigeTiy Sj]’Klgjkl Ho T S5+ Higo T Sj1 + Asaa T S5 (28)
with noticing that:
a o
rs 8 R; 9* Ry d"S; 9°S;
ir = d)C], jl == - s X2 (29)
dxy ox} dx; 0x;
0
The components of stiffness matrix K* are defined as follows:
X AX
x1r _ A 22 ¢l1 11 @22 x12 _ 22 ol1 11 ¢22
Kinw = T(le Sii + Ty Si7), K = _T( WS+ T ST)
—y .
x13 _ 02 ¢l1 11 g02 x4 X722 ll x 1l @22 11 ¢02
Kz‘jkl = T( i Sjii — Tix sz)» K = Z(Bs T;°Sj + BTy Sii — k Sjl)
KX _ ?XTOZS” BAT2g1 _ grplig2) gx22 * 2611 4 11622
ikt = g\ Ps ik 20 T Ps Lk 20 T P Lk jl»ijkl—T(zk jl+kjl)
=x
x5 _ B 11 O 02 11 L=y 22 il
Kijkl = T(Tzk S k Sjl)’ Kijkl = Z(Bs Ty Sy — BT Sii — BXT S )
Kx25 1 BXT251 4 pxpllg22 702511
ikt = 7\ Ps Lk j T BT S — K91
x33_1 X =X L X 00 @22 20 @02 02 @20 22 <00 11 gll
Kk —Z<A —2B"+D )(Tik Sii =T Si — Ty Sy + TSy + 2Ty, Sjl)
1=x
00 g11 11 00
t3P (TSj + T Si1)
Kéi?_%[[(gﬁ(_g;()(jﬁos T22S0" Tllklsll) K?(]ﬁosj' T[IkISZl)) lelsl)()]
Ix/Z? ‘]—‘[(Eﬁ(—ﬁf)( TOl)S22+T02 20 T11S1 ) T"OS”-‘—KX(T,}CIS Tzos )]
KX —%[HX (1329 +omilsll) + A, Tl s9

TH(7)1§20 4 711 g02 X721l 71122
-L (Tik St + Tik SJI)"'Hs (Tik St +Tig Sjl)]
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x45 _ 15X (11 620 02 11 _ X (702 ¢20 11 ¢ll X (71122 22 ¢l1
Kiia = Z[L (Tik Sit + T Sji ) — Hj (Tik Sit + Tik Sjl) — Hg (Tik S5+ TS )]

x55 _I[Zx (r1l o1l | 700 22 |, F7% 00 11
K _ZI:HS <2Tik Sii + Tig Sj1)+H.v Tix Sji

TX (720611 | 70211 X (71122 | 722011
-L (Tik Sii +Ti§ Sﬂ)“‘Hs (Tik S5t + T Sjl)] (30)
The components of mass matrix M are given by:

1 _ 11 00 13 _ 11 00 14 _ 11 00
Mijkl - IOTik S M'jkl - IlTik S; Mijkl - JlTik S

Jjlo i jl» jlo
ME, = WTPS. M3, = TPS) M, = A1) .
ME = WIS+ (TSP + TS, M3k, = wrs
Mz'3jS/<1 = JZY}(IIOS}IIv Mf}il = K27?i1S??7 Misjskl = KZE(IIOS}II

It is worth noticing that for free vibration analysis, by denoting d(¢) = de'’
where o is the natural frequency of the FG microplates and i> = —1 is imaginary
unit, the natural frequency can be hence derived from the following the equation
(K—o*M)d =0.

4 Numerical Examples

In this section, numerical examples are carried out to investigate free vibration
behaviours of FG microplates with different BCs in which the shear function
f(x3) = x3 — 4x3 /3h? is selected. The FG microplates are supposed to be made of
ceramic material Al;O3; and metal one Al whose properties are given as follows:
ALO; (E. = 380 GPa, p. = 3800 kg/m?, v. = 0.3), Al (E,, = 70 GPa,
om = 2702 kg/m?, v,, = 0.3). Preliminary convergence study of the series solu-
tion showed that the number of series ny = n, = n = 10 can be considered as the
convergence point of the solution field, therefore this value will be used in the sequel
computations. Moreover, for convenience, the following normalized parameter are
used in the numerical examples:

wa* [pe
n \E.

w =

(32)

In order to verify the accuracy of the present theory, Table 1 introduces normalized
fundamental frequencies of Al/Al,O; FG microplates in which the solutions are
calculated with different values of the power index p = 1, 2, 5, 10, side-to-thickness
ratio a/h = 10, 20, ratio of thickness-to-material scale 4/l = o0, 5, 2.5, 5/3, 1.25,
1, and four boundary conditions (SSSS, CSCS, CCSS, CCCC). The results obtained
from the present theory with SSSS boundary condition has been compared with
thosed of He et al. [7] based on the MCT and IGA-HSDT theory, Thai and Kim [6]
using the IGA method, TSDT and MCT. It can be seen that there are good agreements
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Table 1 Normalized fundamental frequencies of Al/Al,O3 FG microplates

BCs a/h | p |Theory h/l
00 5 2.5 5/3 1.25 1
SSSS (20 |1 |Present 4.5141 | 49608 | 6.0715 | 7.5784 | 9.3065 |11.1115

TSDT-MCT |4.5228 |4.9568 | 6.0756 | 7.5817 | 9.2887 |11.1042
[6]
HSDT-MCT |4.5228 |4.9568 | 6.0756 | 7.5817 | 9.2887 | 11.1042
[7]
2 | Present 4.1328 |4.5055 | 5.5080 | 6.8791 | 8.4182 | 10.0537
TSDT-MCT |4.1100 |4.5006 | 5.5082 | 6.8661 | 8.4062 | 10.0450
[6]
5 | Present 3.8949 |4.1938 | 5.0048 | 6.1394 | 7.4333 | 8.8334
TSDT-MCT | 3.8884 |4.2005 | 5.0199 | 6.1457 | 7.4397 | 8.8286
[6]
10 | Present 37641 |4.0336 | 4.7303 | 5.7438 | 6.8892 | 8.1474
TSDT-MCT |[3.7622 |4.0323 | 4.7488 | 57453 | 6.9013 | 8.1494
[6]
10 |1 |Present 44186 |4.8537 | 5.9779 | 7.4863 | 9.1982 | 11.0127
TSDT-MCT |4.4192 |4.8526 | 5.9664 | 7.4619 | 9.1537 | 10.9511
[6]
2 | Present 4.0071 | 4.4029 | 5.4160 | 6.7853 | 8.3177 | 9.9588
TSDT-MCT |4.0090 |4.4006 | 5.4071 | 6.7580 | 8.2863 | 9.9101
[6]
5 | Present 37704 | 4.0825 | 4.9086 | 6.0476 | 7.3324 | 87213
TSDT-MCT |3.7682 |4.0876 | 4.9169 | 6.0447 | 7.3338 | 8.7135
[6]
10 | Present 3.6376 |3.9110 | 4.6355 | 5.6433 | 6.8060 | 8.0434
TSDT-MCT |3.6368 |3.9162 | 4.6464 | 56487 | 6.8030 | 8.0448
[6]

CSCS |10 |1 |Present 5.9217 |6.7270 | 8.6699 |11.1709 |13.9332 | 15.4952
Present 5.3641 | 6.0886 | 7.8423 |10.0972 |12.5893 | 15.2033

Present 5.0089 55972 | 7.0417 | 8.9330 | 11.0458 | 13.2752

10 | Present 4.8179 |5.3319 | 6.6071 | 82965 | 10.1959 |12.2104

CCSS |10 |1 |Present 6.2571 |7.1981 | 9.4486 |12.3090 | 15.4451 | 18.7177
Present 5.6642 | 6.5115 | 8.5418 |11.1216 |13.9519 | 16.9038

Present 52629 59547 | 7.6375 | 9.8094 |12.2142 | 14.7385

10 | Present 5.0546 |5.6600 | 7.1471 | 9.0888 |11.2542 | 13.5382

CCCC |10 |1 |Present 7.5972 |8.9737 | 11.9334 | 15.7186 | 19.8229 | 24.0786
Present 6.9314 |8.0884 |10.8045 |14.2073 | 18.7789 |21.7420

Present 6.3776 |7.3691 | 9.6230 |12.4991 |15.6417 | 18.9349

10 | Present 6.1521 [6.9859 | 8.9859 |11.5569 |14.4000 | 17.3824
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bewteen the models. Moreover, it is observed from Table 1 that the fundamental
frequencies decrease with an increase of the power index p. This can be explained
by the fact that with an increase of p led to an decrease of the volume fraction of
ceramic and stiffness of FG microplates. The effect of the power index p on the
natural frequencies of Al/Al,O; FG microplates is also plotted in Fig. 2 for different
values of ratio of thickness-to-material scale 4/l = 5, 2.5, 5/3, 1.25, 1, and SSSS
boundary condition. It can be seen from this figure that the highest and lowest curves
correspond to £/l = 1 and 5, respectively, and there are large deviations of these
curves. The variations of normalized fundamental frequencies with respect to the ratio
of thickness-to-material scale //[ are observed in Table 1 and Fig. 3 for Al/Al,03

12
+— - hfi=5
119 hi=2 5§
——— h/1=5/3
10 = <— hfl1=1.25
==-E}-- hil=1

9 ]
- =
I
S 8 B
&
=
& 5

7 N 1)

—c
—
6k —— il
S s - — — e 5
-
al il i Bt i S S
1 2 3 4 5 6 8 9 10

Fig. 2 Variation of normalized fundamental frequencies with respect the power index p (a/h = 20,
SSSS)

20 T T T T - - -
) — 4=+ 5§58
18 ---- CSCS
—+— CCSS
16 b —— CCCC [
E‘ J
s
4 4
e
—— e —— -9 — —4¢
I —
e — - — - — =3
2 i i i 1 i L i

Fig. 3 Variation of normalized fundamental frequencies with respectto 2/l (p = 5,a/h = 10)
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FG microplates with p = 5 and a/h = 10. The graphs are displayed with four
boundary conditions (SSSS, CSCS, CCSS, CCCC) within which it is observed that
the natural frequencies decrease with the increase of /[ up to the value of 7/ = 10
from which the curves become flatter and size effects can be hence neglected.

5 Conclusions

A unified higher-order shear deformation microplate model for vibration analysis of
functionally graded materials has been proposed in this paper. The present theory is
developed from fundamental equations of the elasticity theory and modified couple
stress theory in which many different frameworks of size-dependent plate models
could be recovered. In order to capture the size effects, the modified couple stress
theory with one independent length-scale parameter is used. The solution field is
approximated by bi-directional series in which hybrid shape functions are proposed,
then the stiffness and mass matrix are explicitly derived. Numerical examples are
investigated for different configurations of material distribution, side-to-thickness
ratio, size-scale-thickness ratio and boundary conditions on the natural frequencies
of FG microplates. The obtained results shows that the size effect is important and
needs to be accounted for the computations. The size effect leads to an increase of the
stiffness and natural frequency of the FG plates. The proposed unified size dependent
plate model presents the accuracy and efficiency in predicting vibration behaviours
of FG microplates.

Acknowledgements This research is funded by Vietnam National Foundation for Science and
Technology Development (NAFOSTED) Under Grant No. 107.02-2018.312.
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Abstract. A unified higher-order shear deformation microplate model for free
vibration analysis of functionally graded sandwich materials with porosities is
proposed in this paper. The theory is developed from a general higher-order
shear deformation framework and modified couple stress theory to capture the
size effects. The displacements are approximated by bi-directional series of
hybrid shape functions, then characteristic equations of motion are obtained by
Lagrange’s equations. Numerical results are presented for different configura-
tions of material distribution, side-to-thickness ratio, size-scale-thickness ratio
and boundary conditions on natural frequencies of functionally graded porous
sandwich microplates.

Keywords: Series-type solutions - Vibration - Functionally graded porous
sandwich microplates - Modified couple stress theory

1 Introduction

Thank to high strength-to-weight and stiffness-to-weight ratios, laminated composite
sandwich materials have been used for micro- and nano-scale structures with large appli-
cations in atomic force microscopes (AFMs), micro-electromechanical systems (MEMs)
and nano-electromechanical systems (NEMS). Moreover, the recent development of
functionally graded porous (FGP) materials with continuous variations of constituents
and a significant porosity density led to challenges in computational methods and mod-
els of FGP sandwich microplates. A number of researches have been performed with
different approaches to accurately predict static and dynamic behaviours of FGP sand-
wich structures, only some representative references are herein cited. For behaviours of
FGP sandwich plates at macroscale, Daikh and Zenkour investigated buckling and vibra-
tion responses of FGP sandwich plates using a higher-order shear deformation theory
(HSDT) and analytical Navier procedure [1]. Pham and Le [2] presented static, buckling
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and vibration analysis of FGP sandwich plates based on a HSDT and finite element
method (FEM). Tran et al. [3] analysed nonlinear vibration of FGP sandwich plates
on elastic foundations subjected to blast loadings using a HSDT and Galerkin method.
Zhang et al. [4] proposed free vibration and damping analysis of FGP sandwich plates
based on the first-order shear deformation theory (FSDT) and Fourier-Ritz method. Tahir
et al. [5] considered wave propagation of FGP sandwich plates in hygro-thermal envi-
ronments based on a refined HSDT and analytical solution. Sah and Ghosh [6] examined
effects of porosity distribution on free vibration and buckling of multi-directional FGP
sandwich plates based on a HSDT and analytical Navier solution. Though a number
of researches have been performed in predicting static and dynamic responses of FGP
sandwich plates using various analytical and numerical methods, the analysis of FGP
sandwich plates at micro- and nano-scales is limited. Thai et al. [7] investigated static,
buckling and vibration behaviours of FGP sandwich microplates using the modified cou-
pled stress theory (MCT) and Kriging meshfree method. Phung-Van et al. [8] optimized
material distributions of FGP sandwich nanoplates using Eringen’s nonlocal elasticity
theory, a refined HSDT and isogeometric approach. A brief literature survey reveals that
the analysis of size effects on behaviours of FGP sandwich microplates is an interesting
topic that needs to be studied further.

The objective of this paper is to propose a unified size-dependent model for free
vibration analysis of FGP sandwich microplates. The present theory is an extension
of previous work [9] for FGP sandwich microplates by using the MCT. The governing
equations of motion are derived from Lagrange’s equations and then bi-directional series-
type solutions with hybrid shape functions are proposed. Numerical results are presented
for different configurations of material distribution, side-to-thickness ratio and different
boundary conditions on natural frequencies of the FGP sandwich microplates.

2 Theoretical Formulation

Consider a FGP sandwich rectangle microplate in the coordinate system (xp, x2, x3) with
sides a x b and thickness % as shown in Fig. 1. The plate is composed of a homogeneous
core and two functionally graded (FG) porous faces which are made of ceramic-metal
materials and a porosity density. The effective material properties of FGP sandwich
microplates can be approximated by the following expressions [10]:

P(x3) = (Pc — Pp)Ve(x3) + P — g(Pc + Pm) 6]

where the volume fraction of the ceramic material V. (x3) through the plate thickness is
defined by [11]:

-2
Ve(x3) = 1 7p < x3 < z3 ceramic core layer (2)

_ p
<x3 Zl) 71 <x3 <z2 FG bottom layer

P
<Z4_X3) ,3<x3<zs FG top layer
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where P. and P,, are the properties of ceramic and metal materials, respectively, such
as Young’s moduli E, mass density p, Poisson’s ratio v; 8 < 1 is the porosity volume
fraction; p is the power-law index.

y

Fig. 1. Geometry of a FGP sandwich microplate

2.1 Modified Couple Stress Theory
The total potential energy of the FGP sandwich microplates is obtained by:

=TIy — g 3)
where 1y, Ik are the strain energy and kinetic energy of the FGP sandwich microplates,

respectively. Based on the MCT, the strain energy of the system I1y is given by [12]:

My = / (oe +my)dV “4)
14

where €, ¥ are strains and symmetric rotation gradients, respectively; o is Cauchy
stress; m are higher-order stress corresponding with strain gradients y. The components
of strain ¢;; and strain gradients x;; are defined as follows:

1
_(ui,j + uj,i)s Xij = Z(un,mjeimn + un,miejmn) )

Sij=2

where ej,, are permutation symbol. The components of stress are calculated from
constitutive equations as follows:

Oij = A&k jj + 2uey, my = 2,11,12)(,‘]‘ (6)

where A, u are Lamé constants; §;; are Kronecker delta; [ is length scale parameter.
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The kinetic energy of the FG sandwich microplates Ik is expressed by:

1 2 2 2
Me =5 ,o(x3)<u1 il + u3)dV %
%
where p(x3) is mass density of the FGP sandwich microplates; i1 = u1 4, ita = ua,

u3 = u3, are velocities in x; —, x— and x3— directions, respectively.

2.2 Unified Kinematics of FGP Sandwich Microplates

A general HSDT kinematic of FGP sandwich plates is derived from [9] as follows:

i (x1, %2, %3) = U} (x1, X2) + D1 (x3)u3 | + P2(x3)@1 (x1, %2) (82)
ur (x1, X2, X3) = u3(x1, x2) + P (X3)ug’2 + O (x3)@2(x1, X2) (8b)
u3(x1, X2, 3) = u3(x1, x2) (8c)
b2
where ®1(x3) = HW(x3) — x3; Po(x3) = HV(x3); H® = % f w(x3)dxsz is the
—h/2
transverse shear stiffness; w(x3) = % is the shear modulus; f (x3) is a higher-order

term whose first derivative satisfies the free-stress boundary condition at the top and

bottom surfaces of the FGP plates, i.e. f 3 <X3 =+ ) =0;V(x3) = f

M(m)
Substituting Eq. (8) into the strains and strain gradients in Eq. (5), the strains e/ =
[e(i) g® ] are obtained as follows:
eV =@ 4+ @ (x3)eM + Br(x3)e?, ¥ = D3(x3)e® 9)
where ®3(x3) = H*W 3 with ¥ 3(x3) = f*((j:)) and,
(0) (1
0 0
. Sl(‘) Ui | 8‘11 U3 11
e@ =10 1= ud, ceW =1t =11, (10a)
0 0 0
)/](g) Uypptuy, y 2u3 15
2
f11 @1,1
, ©0) 0
Y1 +u
€@ =10e (= 02 eV = {7/1(%) } N {‘Pz fl } e
@ Y12+ @21 V23 3.2
Y12

Moreover, the symmetric rotation gradients are given by:

1 _
Xij = 5(§,<,J-+9j,,-) (11)
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where 6; is determined in terms of the displacements u; as follows:

_ 1 1
0 = E(u3,2 —up3) = z(ug,2 — @33, — q>273¢2> (122)
— 1 1 0 o
0= (m3—us1) = 5(—uz s+ Pr3u3; + P23 (12b)
2 2 , ,
_ 1 1 0 0
03 = E(l/lz,] - u1,2) = 5[142,1 —ujp+ <I>2(<p2,1 - <p1,2)] (12¢)

Substituting Eq. (12) into Eq. (11), the rotation gradients are expressed as follows:

X =XQ 4+ @1 5%D 4+ @2 3x?® + D1 33x @ + P233% P + Dx® (13)

where X7 = [ x11 x22 2x12 X33 2x13 223 | and,

0
Uz 12 _“g,lz —¢2,1
0 0
o ”3,120 Uz 12 ?1,2
2O = Hwn—wul o1 @u—@n,xmzl P11 = P22
2 0 2 0 21 @21 — 91,2
0 0
Uy 11— Uy 12 0 0
Uy 10 — Uy 0 0
(14a)
0 0 0
0 0 0
1 0 1 0 1 0
@2 @_ 2 ) 14b
X 51 o [ X 51 o [ X > 0 (14b)
—”(3),2 —¢2 ©2.11 — ¥1,12
M(3),1 ¥1 $2,12 — ¢1,22

Furthermore, the stresses and strains of FGP sandwich microplates are related by
constitutive equations as follows:

. o1l OnQn 0 el o
oV =10ont=000n 0 £ + = Qe
o12 0 0 Qs vz (15a)
@ _Jois| _|0Oss O ” )/13} EPNORO)
o = = =Q%¢
{023 } [ 0 Qu]lyns ¢
mi (1000007 | X1
man 010000 X22
mo 1001000 X12
™= s 1000100 [) yas [ ~ “270x6X (155)
ma3 000010 || 4y
mi3 (000001 | |7
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where
ay =2ul? (16a)
_ E(x) _ Ex) _ VE(x3) e EMx)
Oun=1_—17 =77 Qu=7"775 Qu=0s5=06=p= A1)
(16b)

2.3 Energy Principle
In order to derive the equations of motion, Hamilton’s principle is used:

%)

/(51‘1U — 8Tg)dt =0 (17)

n

where 811y, 6[1x are the variations of strain energy and kinetic energy, respectively.
The variation of the strain energy of FGP sandwich microplates derived from Eq. (4) as
follows:

S 1_[ = / (06 + méy)dA = / I:Méo)gs(O) + Mgl)(SS(l) + M£2)5€(2) + M,(;3)5€(3)
U 4 A
AMPsx @ +MPsx D + MPox @ + MP sy + MP sy @ + M§f>ax<5>]dA

(18)
where the stress resultants are given by:
h/2 h/2
(M§°>, M, Mg2>) = / (1, @1, )0V dxz, MY = / ®30@dx;  (19a)
—h/2 —h/2
h/2
(M;‘”,Mﬁ(”,M§<2),M§(3),M§<4),M§f>) = / (1, @13, D23, @133, D233, P2)max
—h/2
(19b)

These stress resultants can be expressed in terms of the strains and its gradients as
follows:

M A® BB 0 ] (@

M| | BED*DE 0 |]e 208)
2 - c
12 BEDEHS 0 || e®

MY 00 0 A ](e®
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iy
MO [AE BB B B (40

b B AR R L

M| _ | B D H G T T @ (20b)
Mo [ | B ENGID DORE X

e fpaciad R
M{S) BS ES 1 BS I—I_S L X(5)
M¢ | B/ F J KL Hf X

where the stiffness components of the FGP sandwich microplates are defined as follows:

n2
(A®, Bf, D°, HE, BE, DF) = / (1, @, 2, ©2, Dy, qalclnz)Qg")dX3 (21a)
—h)2
h/2
Af = / ®3Qdx3 (21b)
—h/2
2
(AX,EX,Ef,ﬁx,Ef,Bgﬁ): / (1, @13, ©2.3, D1 33, P23, Ba)atyTsxedcs (21c)
—n2
2
(ﬁx,ﬁf,fx,ﬁfjﬂz / D13(P13, P23, P1,33, P2,33, P2)aryIexedrs (21d)
—h)2
n2
(ﬁf,@f,ix,jx> = / D2,3(P2,3, 1,33, 2,33, P2)aryTxedxs (21e)
)
(0" Dy K H,. T 1Y)
h/2 Q21f)
= / (‘19%,33, D1 33P2,33, P1,33P2, D3 33, P2,33D2, <I>§)axlsx6dX3

—h)2

The variation of kinetic energy 8 [ [ derived from Eq. (7) is calculated by:

1
\4

I
=2 / Lo (i3 -+ idsid) + i) + 11 (a5, + il 8 + a8 5 + i 1603
A

(1801 + 91808 | + i 1592 + 9281 ) + K2(6181 + §2592)
01 (0801 + @r8i + i35 + 4288 + I (3,183, + S 813, ) |da
22)
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where Iy, 11, I2, J1, J2, K> are mass components of the FGP sandwich microplates which
are defined as follows:

n/2

(o, I, 1o, J1, T, Kp) = f (1,<1>1,<I>%,<1>2,<D1<1>2,<1>§)pdx3 (23)
—h)2

3 Series-Type Solutions of FGP Sandwich Microplates

Based on the Ritz method, the membrane and transverse displacements, rotations
(u(l), ug, ug, @1, <p2) of the FGP sandwich microplates can be expressed in terms of the
series of approximation functions and associated values of series as follows:

ny  ny

[, 0. 100,02, 0) = 303 {0, ORGP Q4a)
i=1 j=1
ny np

{uS(xl,xz, 1, p2(x1, x2, r)] =3 @), yy(O }Rix1) P2 (x2) (24b)
i=1 j=1

(e, x2, 1) = Y Y ua(ORi(x1)P;(x2) (24c)

i=1 j=1

where uy;;, upjj, usjj, X;j, yjj are variables to be determined; R;(x1), Pj(x2) are the shape
functions in x;—, xp— direction, respectively. As a result, five unknowns of the FGP
microplates only depend on two shape functions. It should be noted that the accuracy,
convergence rates and numerical instabilities of the Ritz solution depend on the con-
struction of the shape functions, which was discussed in details in [13, 14]. The functions
Ri(x1) and Pj(x) are constructed to satisfy the boundary conditions (BCs):

— Simply supported (S): ug = ug = ¢ =0atx; =0,a and “(1) = ug =¢; =0at
Xy = O,b
— Clamped (C): ”(1) = ug = ug =¢pr=¢r=0atx; =0,aandx; =0, b

The combination of simply-supported and clamped BCs on the edges of the FGP
microplates leads to the various BCs. In the present paper, two typical BCs (SSSS and
CCCQ) are considered in which the shape functions are formed from hybrid ones which
are composed of admissible functions and exponential ones as follows:

X2

— For SSSS BC: R;j(x1) = x1(a — xl)e_%l, Pi(x2) = x2(b — xz)e_'/T
i _in
— For CCCC BC: R;(x1) = x3(a — x1)%¢ "0 , Pj(x2) = x2(b — x2)%¢ 7.
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Substituting Eq. (24) into Eqgs. (18) and (22) and then the subsequent results into
Eq. (17) lead to the characteristic equations of motion of the FGP sandwich microplates
as follows: Kd + Md = 0 where d = [u; up u3 x y]T is the displacement vector to
be determined; K = K? 4 KX is the stiffness matrix which is composed of those of the
strains K¢, symmetric rotation gradients KX ; M is the mass matrix. These components
are given more details as follows:

Kgll K§12 K§]3 K§l4 K{lS
TK§12 K§22 KZZ}. K§24 K{ZS
KS = | TREB TR KB KE3* KB | with ¢ = {e, x} (25)
TK§14 TK{24 TK§34 K(4—4 K§45
TKUS TK{ZS TKC35 TK{45 K{SS
where the components of stiffness matrix K¢ are defined as follows:
1 22 600 1l pel2 02 ¢20 11¢ll
i =ANTi S + AT S+ Kig = ALTy Sy + Age T Si
el13 22600 | pe 702 @20 e mllgll
ki =BuTi' Sy + BTy Si +2BgTy S
el4 & 22 00 & 11¢ll el5 & 02 ¢20 & 11¢ll
ikl =BT Sy + Bise T Sip - Kijgg = Bio Ty Sji” + BygsTire Sjt
€22 00022 | e pllall pe23 _ pe 720002 | pe 70022 e mllcll
ki =AnTy Si” + AT Sii > Kijig = B1oTi Sji” + BTy Sii” + 2Bge Ty S
24 & 20 ¢02 & 11¢l1 £25 & 00 ¢22 & 11¢ll
ikl = Bs1oTie Sii” + Bs Tk S » Kijii' = Bson Ty Sit” + Bgs Tire Syt
€33 e 122000 | e (702¢20 | 720 q02 e 70022 e mllcll
ki = DTS +D12(Tik S+ T Sj ) + D5 Ty ;™ +4Dee Ty Sjy
0011 11 ¢00
FAU Ty Si + Agss Ty Sji

L

€34 _ e 722000 | e 720 g02 e mllall | a6 11600
Ky = Din TSy + Dy T Si™ + 2De Ty Sjp + Agss Ty Sy

€35 _ ne 702020 | e 700 022 e pllgll | a6 70001l
Ko = DTy Sy + Do Ty Si™ + 2D6 Tyt Sjp + Agaa T Syt

e4d _ e 22600 e pllall | a6 71100
ik = Hin TSy + Hige Ty Sip +Agss Ty Sjy

ed5 _ pye 02 ¢20 5 11 ¢l1 55 _ pye 00 ¢22 5 11 ¢l1 e 00 11
ik = Ho Ty Sy + Hege Ty Sip s Kijig = Hopo Ty Sj™ + Hyge Ty Sjp- + Agaa Ty Sy
a r s a r \)

s 0"R; 0 de g _ 9"S; o Sld 2%
ik = r s X9 = m o 2 (26)
ox] 0x) dxy 0x,
0 0

The components of stiffness matrix KX are defined as follows:
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xll_AX 2211 1122 x12 _ AX 0l 11022

Ky = T<Tik Syt + Ty Siy ) K —_T(Tik St + Ty Sjl)
=X

x13_ B 0211 11 ¢02 x4 Loox 2 X 11022 RX 41102

K =7 (Tik St =T Sjy )’Kz‘jkl = Z(Bs TSy +Bs Ty Si” — By Ty Sjl)

x15 _ L=Xo 0011 X221l X11a22 x22_AX 22 11 1122

K = Z<Bs Ty Sy —Bs TSy — Bs Ty Sji ) K = T(Tik Sit + Tk sz)

X
x23 _ B 1102 0211 x24 _ 1=x 41 .m X722 all X1l @22
K, _7<Tik Sim =Ty Sj ) K, *(Bs Ty Sj” = Bs TS — Bs Ty, Sjl)

ijkl 4 ikl — 4

KT = g (BTRs)! 4 BT s B TP

Ké‘ﬁ} _ %( X _2BX + 5)() <T55)<05/212 _ Tl%(osjgz o Ti(1)<25/210 + Tl%czsgo + 2Ti}<l Sjlll)
+35x <T5(1)<0 Sjll Ly Ti}( 1 S/go)

kit = GL(B - Dn) (rsip s - m's))

(1) 1) <L)
K = 3B D) (risE 1P - riisy)
+D; TikOSjlll +K (Ti}cl Sﬁo - Tl%cosjlll)]
K = i[ﬁ? (122590 +2mp IS4 + ;T 5P
—D (T30 + TR SP) + HE (T3S + Th! s |
KL = i[zx (1530 + T2 ) — HE (T3 + Ti!s) ) — m(Th! s + T8} |
KIS = i[ﬁg (2mi)s)) + 19052 + H,1s) — T (120s)) + 0Ps))
+HZ (THS3 + Tgfsjlll)]

(27
The components of mass matrix M are given by:
1 _ 11600 as13 _ 7 pl1g00 ar14 _ 11600 ardd _ 11 600
Ml;/kz =IoTy Sﬂ ’sz/kl =NhTy'S Mijkl =Ty S Ml;,'kz = KoTy Sﬂ

it il
2 _ 001l 5,23 _ 001l ar25 _ 001l 5,55 _ 00 11
Mijkl = IoTy Sjl ’Mijkl =NhTy sz ’Mijkl =Ty Sjl ’Mijkl = KoTy Sjl
33 _ 00 ¢00 11 ¢00 0011 34 _ 11¢00 2s35 _ 0011
Mg = LTy Sy + I (Tik Si + T Sjy ) Mg = DTy Si s Mg = Ty'S),

i
(28)

It is worth noticing that for free vibration analysis, by denoting d(¢) = de’’ where
 is the natural frequency of the FGP sandwich microplates and i = —1 is imaginary
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unit, the natural frequencies can be hence derived from the following the equation:
(K — »*M)d = 0.

4 Numerical Examples

In this section, numerical examples are carried out to investigate free vibration behaviours
of FGP sandwich microplates in which the shear function f(x3) = x3 — 4x§’ / 3h2 is
selected. The FGP sandwich microplates are supposed to be made of ceramic material
Al,O3 and metal one Al whose properties are given as follows: Al,O3 (E. = 380
GPa, v, = 0.3,p. = 3800 kg/m?), Al (E,, = 70 GPa, p,, = 2702 kg/m>, v,, = 0.3),
0o = 1 kg/m3 and E, = 1 GPa.The preliminary convergence study on the series solution
showed that the number of series n; = np = n = 10 canbe considered as the convergence
point of the solution field, therefore this value will be used in the sequel computations.
Moreover, for convenience, the following normalized parameter is used in the numerical
examples:

__wd® [p,

w= n VE, 29)

In order to verify the accuracy of the present theory, Table 1 introduces normalized
fundamental frequencies of Al/Al,O3 FGP sandwich microplates in which the solutions
are calculated with different values of the power index p = 0.5, 1, 2, side-to-thickness
ratio a/h = 10, ratio of thickness-to-material scale 4/l = o0, 5, 5/3, 1, porous parameter
B =0,0.1,0.2.

The results obtained from the present theory with SSSS boundary condition are
compared with those derived from FGP sandwich plates of Pham and Le [2] based on
the FEM and HSDT, Li et al. [11] based on three-dimensional model and Ritz method,
Thai et al. [15, 16] based on HSDTs and isogeometric approach, Daikh et al. [1] based
on a HSDT and Navier procedure, Thai et al. [7] based on the MCT and HSDT. It can
be seen that there are good agreements among the models at both macro- and micro-
scales. Moreover, it is observed from Table 1 that the fundamental frequencies decrease
with an increase of the power index p. This can be explained by the fact that with
an increase of p led to a decrease of the volume fraction of ceramic and stiffness of
FGP sandwich microplates. The variations of normalized fundamental frequencies with
respect to the ratio of thickness-to-material scale 4/[ are observed in Fig. 2 for Al/Al,O3
FGP microplates with 8 = 0.1, p = 2 and a/h = 10. The graphs are displayed with
six different types of bottom-core-top thickness ratio within which it is observed that
the natural frequencies decrease with the increase of &/l up to the value of 4/l = 10
from which the curves become flatter and size effects can be hence neglected. Moreover,
Table 2 shows the normalized fundamental frequencies of FGP sandwich microplates
with clamped boundary condition. The solutions are examined with those of Pham and
Le [2] without size effect (h/L = o0), Li et al. [11] without size and porosity effects
(h/L = oo, B = 0). Good agreements are again found of the theories when the effects
of porosity or both size and porosity are not considered. New results on fundamental
frequencies on the CCCC boundary condition can be used for benchmarks in future
research.
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Table 1. Normalized fundamental frequencies of Al/Al;O3 FGP sandwich microplates with
SSSS and a/h = 10

p h/l | Theory 1-0-1 212 (211 (111 (2224112
B=0
0.5 0o | Present 14404 | 1.4806 | 1.5046 | 1.5160 | 1.5454 |1.5717
MCT [7] | 14462 14861 |1.5084 | 1.5213 |1.5492 | 1.5766
3D [11] 14461 | 14861 | 1.5084 | 1.5213 | 1.5493 | 1.5766
IGA[15] | 14443 | 14841 |15064 |15192 |1.5472 | 1.5745
IGA[16] | 14519 |1.4918 | 1.5142 |1.5264 | 15543 | 1.5806
5 | Present 15944 |1.6424 |1.6670 | 1.6818 |1.7121 |1.7413
MCT[7] | 1.5987 | 1.6423 |1.6643 |1.6788 |1.7064 | 1.7345
5/3 | Present 25059 |2.5960 | 2.6261 | 2.6584 | 2.6965 | 2.7409
MCT[7] 2.5006 |2.5667 |2.5900 |2.6142 |2.6437 | 2.6787
1 | Present 37068 |3.8488 | 3.8888 3.9415 3.9913 |4.0370
MCT[7] | 3.6872 |3.7836 |3.8126 | 3.8488 | 3.8885 |3.9325
1 oo | Present 12400 | 1.2968 | 1.3343 | 1.3501 | 1.3968 | 1.4363
MCT[7] | 12449 13019 |1.3352 |1.3552 |1.3975 | 14413
3D [11] 12447 13018 | 13351 13552 |1.3976 | 14413
IGA[15] | 1.2432 13001 |1.3334 13533 | 1.3957 | 14393
IGA[16] | 1.2552 | 13128 |1.3466 | 13653 | 14076 | 1.4490
5 | Present 13918 | 14616 | 14996 |1.5204 |1.5677 | 1.6106
MCT[7] | 1.3963 | 14612 |1.4941 14941 | 1.5590 | 1.6038
5/3 | Present 22667 24029 24474 24949 25511 | 2.6155
MCT [7] | 2.2638 23729 24092 24492 |2.4950 |2.5512
1 | Present 33964 | 3.6121 |3.6716 |3.7483 |3.8217 | 3.9149
MCT[7] 33769 |3.5413 |3.5882 |3.6486 3.7072 | 3.7830
B =0.1
2 oo | Present 09787 |1.0532 | L.1117 |1.1309 |1.2038 | 1.2616
FEM[2] 09755 | 1.0562 |1.0888 |1.1292 |1.1774 | 1.2492
HSDT[1] 09825 |1.0471 |1.0941 |1.1207 |1.1826 | 1.2493
5 | Present 11326 |1.2313 12891 | 1.3176 |1.3893 | 14515
1 | Present 3.0104 33555 3.4467 |3.5625 |3.6703 | 3.8047
B =02
oo | Present 09156 |0.9909 | 1.0388 | 1.0659 | 1.1299 |1.2194

(continued)
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Table 1. (continued)

p h/l | Theory 1-0-1 2-1-2 2-1-1 1-1-1 2-2-1 1-2-1

FEM [2] 09118 ]0.9961 |1.0150 |1.0737 |1.1150 |1.2039
HSDT [1] |0.8786 |0.9549 |1.0055 |1.0420 |1.1105 |1.1915
5 Present 1.0423 | 1.1644 | 1.2303 |1.2671 |1.3483 | 1.4212
1 Present 29608 |3.3527 |3.4533 |3.5829 |3.7009 |3.8479

Table 2. Normalized fundamental frequencies of Al/Al;O3 FGP sandwich microplates with
CCCCBCanda/h =10

p h/l | Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1
p=0
0.5 o0 Present 2.5021 12.5699 [2.6262 |2.6678 |2.7109 |2.9006

3D [11] 2.5259 125949 |2.6535 2.6982 27498 |2.9583
10 Present 2.6160 |2.6903 |2.7498 2.7931 |2.8377 |3.0325
Present 29269 3.0174 |3.0861 |3.1324 |3.1833 | 3.3902
Present 4.5152 |4.6803 |4.7922 |4.8575 |4.9368 |5.2193
1 Present 7.8188 | 8.1195 |8.3227 84462 85852 |9.0923
1 ) Present 2.1774 22770 |2.3658 |2.4355 25039 | 2.8174
3D [11] 2.1901 22910 |2.3818 24510 25397 |2.8625
10 Present 22890 23985 24915 25622 2.6335 |2.9498
Present 25923 27272 |2.8322 29055 29838 |3.3085
2 Present 4.0961 |4.3460 |4.5115 [4.6079 [4.7225 |5.1290
1 Present 7.0669 | 7.5054 |7.8021 |7.9964 | 8.1889 | 8.9382
5 ) Present 1.6662 |1.7417 |1.8521 |1.9726 |2.1120 |2.6393
3D [11] 1.6618 [1.7392 |1.8579 |1.9671 |2.1571 |2.6673
10 Present 1.7550 | 1.8608 |1.9835 [2.1052 |2.2096 |2.7742
Present 1.9956 |2.1768 |2.3309 |2.4563 |2.5752 |3.1378
Present 3.1799 [3.6540 3.9423 [4.1074 |4.2943 |4.9494
1 Present 54600 |6.1861 |6.6639 |7.0401 |7.3095 | 8.6038

B =02
2 co | Present | 1.5633 |1.7347 | 1.9001 2.0286 | 2.1612 | 2.7331

(continued)
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Table 2. (continued)

p h/l | Theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1
FEM [2] |- - 1.8944 |1.9680 |- -

10 Present 1.6876 | 1.8789 [2.0494 |2.1773 |2.3110 |2.8768
Present 2.0126 22537 |2.4406 |2.5677 |2.77074 | 3.2634
Present 3.4838 139376 |4.2175 |4.3737 |4.5588 |5.1840
1 Present 5.8706 |6.6405 |7.1623 |7.5421 |7.8361 |9.0762

4
1-0-1
2-1-2
35) 2-1-1
1-1-1
2-21
3 1-2-1
%)
c 25
(0]
S
o
o 2
(TR
1.5
1
0.5

5 10 15 20 25 30 35 40
h/l

Fig. 2. Variation of normalized fundamental frequencies of Al/Al, O3 FGP sandwich microplates
with SSSS respectto i/l (p =2, 8 =0.1,a/h = 10)

5 Conclusions

A unified higher-order shear deformation microplate model for free vibration analysis
of functionally graded sandwich porous materials has been proposed in this paper. The
present theory is developed from fundamental equations of the elasticity theory and
modified couple stress theory. The solution field is approximated by bi-directional series
in which hybrid shape functions are proposed, then the stiffness and mass matrix are
explicitly derived. Numerical examples are investigated for the different configurations
of material distribution, side-to-thickness ratio, size-scale-thickness ratio on the natural
frequencies of FGP sandwich microplates. The obtained results show that the size effect
is important and needs to be accounted for the computations. The size effect leads to an
increase of the stiffness and natural frequency of the FGP sandwich plates. The proposed
unified size dependent plate model presents the accuracy and efficiency in predicting
vibration behaviours of FGP sandwich microplates.
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A BCMO-DNN algorithm for vibration optimization of
functionally graded porous microplates
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Abstract. The authors propose a novel BCMO-DNN algorithm for vibration optimization of
functionally graded porous microplates. The theory is based on a unified framework of
higher-order shear deformation theory and modified strain gradient theory. A hybrid
combination of deep learning neural network and balancing composite motion optimization
is developed to solve the optimization problems and predict stochastic vibration behaviors of
functionally graded porous microplates with uncertainties of material properties. The
characteristic equations of motion are derived from Hamilton’s principle and approximation
of exponential series. Numerical results are obtained to investigate the effects of the material
distribution, material length scale, porosity density and boundary conditions on natural
frequencies of functionally graded porous microplates.

Keywords: Vibration, Functionally graded microplates, Modified strain gradient theory,
Deep leaning neural network, Balancing composite motion optimization.

1. Introduction

The study on static and dynamic responses of functionally graded porous (FGP) plates has
recently been an interesting topic attracted a number of researches with various computational
methods and plate models. However practically, the behaviors of such structures at the small scale
could not accurately predict by classical elasticity theories due to size effects. In order to overcome
this adverse, the nonlocal elasticity theory ([1]) can be used for analysis of functionally graded
nanoplates ([2]). Nevertheless, the implementation of this theory for nanostructures with different
boundary conditions appears to be quite complicated. Another way to investigate the size effects is
to use the modified couple stress theory (MCT) with one material length scale parameter (MLSP)
or modified strain gradient theory (MST) with three MLSPs. These approaches have been employed
to predict the behaviors of functionally graded microplates ([3-5]). For optimization of composite
structures, meta-heuristic optimization methods based on natural phenomena are recently
considered as robust and reliable approaches ([6-9]). In practice, these algorithms with dependent
parameters require high computational costs. An alternative way is to use balancing composite
motion optimization algorithm (BCMO) ([10]) in which no dependent parameters are required. This
approach has been applied to optimize behaviors of functionally graded plates ([11, 12]). Moreover,
the machine learning included artificial neural network (ANN) and deep learning neural network
(DNN) has been used to material optimization of composite structures ([13-15]). Though many
researches on the optimization analysis of laminated composite and functionally graded plates have
been performed, as far as the authors are aware, the study on optimal behaviors of the FGP
microplates with uncertain materials is still limited.

This paper aims to investigate optimal responses of natural frequencies of FGP microplates
subjected to uncertainties of material properties. It is based on a unified microplate model using
a general higher-order shear deformation theory and MST. A combination of BCMO-DNN is for
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the first time proposed to solve the optimization problems and predict stochastic vibration
behaviors of FGP microplates. The characteristic equations of motion are derived from
Hamilton’s principle, and Ritz-type series method is used to approximate the field variables.
Numerical results are used to study effects of the material distribution, material length scale,
porosity density and boundary conditions on natural frequencies of FGP microplates.

2. Theoretical formulation

Consider a rectangle FGP plate in the coordinate system (x,,X,,X,) with sides axb and

thickness h. It is supposed that the FGP microplates are composed of a metal-ceramic mixture
and porosity density whose effective material properties are approximated by the following
expressions ([16]) :

(u)=(r-R)( 250 +5-L(R 4R ®

where P, and P, are the properties of ceramic and metal materials, such as Young’s modulus E,
mass density p, Poisson’s ratio v ; <1 is the porosity volume fraction; p is the power-law

index which is positive and x, €[-h/2,h/2].

2.1. Modified strain gradient theory

The total potential energy of the FGP microplates is composed of the strain energy I1, and
kinetic energy I, as follows: IT=I1, —I1, . Based on the MST, the strain energy I1, is given
by:

I, =I(cs+p§+rn+mx)dv (2)

\%
where g,%,&,1 are strains, symmetric rotation gradients, dilatation gradient and deviation stretch
gradient, respectively; ¢ is Cauchy stress; m,p,t are high-order stresses corresponding with
strain gradients y,&,m, respectively. The components of strain ¢; and strain gradients &, 7;,, x;
are defined as follows:

jj :%(ui,j +uj,i);§i =Emi X :%(un,mjeimn +un,miejmn) (3a)

=l(gjk,i * & j +gij,k)_%|:(‘§k +28mk,m)§ij +(§i +2‘9mi,m)5jk +(§j +2‘9mj,m)5ki:| (3b)

ik 3

where &, ;,, are Knonecker delta and permutation symbol, respectively; the comma in subscript
is used to indicate the derivative of variable that follows. The components of stress are calculated
from constitutive equations as follows:

Oji :ﬂ’gkké‘ij + 2,U“"ij ym; = 2#'127(” P = 2,u|22§j y Tijk = 2/”'3277ijk (4)
where A,u are Lamé constants; |,l,,l, are three MLSPs. The kinetic energy of the FGP
microplates I, is expressed by:
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1 22
I1, =§J.p(x3)(uf+u§+u§)dv (5)
where p(x,) is mass density of the FGP microplates; u, =u,,, U, =U,,, U; =U,, are velocities
in X, —, X, — and X, —directions, respectively.

2.2. A general kinematic of FGP microplates
A general kinematic of FGP microplates is derived from ([17]) as follows:

ul(Xsz’X3)=u10(xlvxz)+q)1(xs)u§,1 +CD2(X3)¢’1(X1’X2) (6a)
UZ(Xi,XZ,X3)=US(X1,X2)+CD1(X3)U§’2 +®, (Xs)(Pz(leXz) (6b)
US(Xl,XZ,X3)=U§(X1,X2) (6¢)

where @, (%;)=H ¥ (X,)— X, P, (% )=H"¥(x;); H® is the transverse shear stiffness of the

FGP microplates; ¥ (x,)= J. fo/ u(x;)dx, is a shear function; u(x,)=E(x;)/(2(1+v))is the
0

shear modulus; f(x,) is a higher-order term whose first derivative satisfies the free-stress

boundary condition at the top and bottom surfaces of the microplates, i.e. f,3(x3 =+h/2)=0.

Substituting Eq. (6) into the strains and strain gradients in Eq. (3), the strains &' :[s(i) 8(5)] are

obtained as follows:

g =g 4 CI)l(XS)s(l) + @, (X, )8(2) g =, (X3)£(3) )

where @, (x,)=H"¥, with ¥ (%)= f,(x%)/ u(x); the components of &" can be found

more details in [5]. Moreover, the non-zero components of dilatation gradients & = [51 & & ]T
are given by:

g="+ 0" + 0,87 + @, g%+ D, £ 8)
where
&) [yl & [+l
g(o): ‘:géo) = U10,12+Ug,22 ;é(l)z é:z(l) = U§,112+u§,222 (92)
wof | o @) [ o
N FU £ [ o
L e PR P e T et U S o S T (9b)
53(2) 0 fés) u.’s(‘),ll + ue?,zz 5:54) PitPo

The non-zero components of deviatoric stretch gradients 7;, are given by:

Thu =€ _(51 +26, + V122 * V133 ) 15,1y =2, = (52 +260,+ V1t 723,3) /5 (10a)
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_(653 + 7131 +723,2)/5177112 =T =Tha = (‘9112 +7121)/3 (‘fz TV2at 2522,2 +723,3)/15

This =Tk =Tha = (7/131 +5113)/3 (53 + V131 +723,2)/15

o1 =The =1, = (712,2 + 522,1) / 3_(51 +26, + V0, + 713,3)/15

TToos =132 =Thsp = (723,2 + 822,3)/3_(683 V1311732 ) /15

Tha1 =Thas =13 = 7133 /3_(681 +26,+ V0, + 713,3) /15

Mazs =Tz =Maps = Va3 | 3— (52 + V101 T 265, + Va3 ) /15

Thos = Moz1 = Ma12 = Thay =131 =113 = (7231+7132+7123)/6

(10b)
(10c)
(10d)
(10e)
(10f)
(109)

(10h)

Substituting the strains in Egs. (7) and (9) into Eqg. (10) leads to the expressions of
deviatoric stretch gradient components in terms of the displacements as follows:

=" +on" +o,n? + o0 + o, '+ D, 1 + D, 0

where i’
0 0
2“1,11 - 2“2,12 - u1,22
0 0
2u2,22 - 2”1,12 - u2,11
0
0 0 0
_(Sul,ll + 2u2,12 + Ul,zz)
11(0) = 1 _(3u;22 + 2u1?12 + u(z),n)
5 0 0 0
4“1,22 + 8“2,12 - 3”1,11
0 0 0
4”2,11 + 8”1,12 - 3“2,22
0
0
0
0
0
_(u;n + u;zz TPt P )
0
O 0
5 0
0
4“5,11 - u§,22 +49, -9,
4u§,zz - u;u +49,, ¢
5((01,2 T@ut 2“2,12)
580

gl -

0 0
2“3,111 - 3u3,122

0 0
2u3,222 - 3u3,112

0

(U3 w T U3 122 )
(U3 12t u3 222 )
N
(4U3 122 U3 111 )
<4U3 112 3 222 )
0
0
0
0
0
_(ugn + ue?,zz )
0
0 = 1
0 5
0
4“2,11 - ugzz
4“322 - u;u
10u;,,

2 _ 1 _(3%,22 +20,, + (/72,11)
> 4,5 +80,1, =301,
40,1, +8p11, =30, 5
0
0
0
: (o)
0 (502 +U; 2)
(2022 0
0 4(@1 +ug,
8 n® :é 4(goz+u;;2
0 _(‘/’1 +Us,
4, —0,, _(% + Ug,z
40,, — @1y 0
5(0.2 + 021) g

_(3%11 +20,,, + (01,22)

=[77111 Moz Mazs Mazs Mgy Mo Mhay Mz oo 677123]’ and

20,1,
- 2(/’1,12
0

2¢, 1,
2¢2,22

— Do
P11

(11)

(12a)

(12b)
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Moreover, the symmetric rotation gradients are given by y; :(5” +67j'i)/2 where 9_, IS

determined in terms of the displacements u; as follows:

6 = (u3,2 —Uy; )/ 2= (ug,z - q)1,3u2,2 —D,:0 )/ 2, 52 = (ul,3 —Us, )/ 2= (_u;l + (D1,3ug,1 +®0,50 )/ 2 (13&)
b, = (uz,l —U, ) 2= [Ug,l —U , +@, (¢2,1 ~ P ):' /2 (13b)

The rotation gradients are expressed as follows:
x= X(O) + (I)l,sx(l) + ®2,3X(2) + ®1,33X(3) + ®2,33X(4) + (sz(s) (14)

where %@ %™, %@ %, x“,x® are given in [5]. The stresses and strains of FGP microplates are
related by constitutive equations as follows:

o) = QU : 6 = QU)g?

&

(15a)
Mm=a l . P=al .8, 1=al,m (15b)

where o, =247, o =2ul}, a, =2l ; the reduced stiffness matrix Q" and Q'®’ can be found

. T T
In [5]; :[mu my m, My My m13]1 p:[pl P, ps] and
T
72[7111 T2 Tz Tom Tzt Ts:z Tass Tus oz 7123] -
2.3 Variational formulation
In order to derive the equation of motion, Hamilton’s principle is used:
)
j(anu — 1, )dt =0 (16)
t1
where the variation of the strain energy oI, of FGP microplates as follows:
oMy = [(08e+pSE +Tom+may)dA= j[ e® + MUse® + MPse® + M5
A
+MP62® + MPse® + MPse® + MPoz® + Moz a7
+M§f>5x<°>+M§j>5x<l>+ M5y )+M35x + MWy + MO sy
MO0 + MUsn® + MPsn® + MPon® + MU + MPon® M50 |dA
These stress resultants can be expressed in terms of the strains and its gradients as follows:
i - =x =X ZZ 1
M(O) A% B Bs B Bs Bf X(O)
X
MP | Tar B B 07| |m@| |B® DY DI BN OELFL||,
x
R O TVl B - o A A | P RPN
= X
M?: Bog I?)i I-(i)i A(; £i2) M1 1B" B & D bl K|
MG s 1 |g® M = =y =7 _ |ly®
’ < B, E/ 1" D H. L .
il B oy kL owe"
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B =57

M©) |A7 B" B A?” B B Al|[.0 _ )
! =y = ||! MO AS BE Bf B° B[O
MY| |B” D' D! Di O P Q||q® ¢ . § 3
— - — @) ¢ 4 S0 P 1
MO | B D M DL F 3 Fh||q@| [MI[|BT DT DL O Pl ed (180)
—7 —1 —1 1 (2) & & & =< =¢ (2)
M t=|A7 Dy D Hp Fe 3k R |{n” Mf) B Do Ho R J s
|| 56 =& —¢ =¢ =¢
M| |8 o' E R o o oi|n?| [M||B° 0 F D D|jE”
@] = — = —  — (4)
I = R = 1L R B - H R o
O I N | ()
M, Al Q! Fr R' Du Dn Hi UM
The variation of kinetic energy oI, is calculated by:
M, =§J.,o(ul5u1 +U,0U, + U, U, )dV =§J.[Io (uf&uf +Uouy +u§5u§)+ K, (@00, + ¢,00,)
Vv A
+1, (UpSUS, + g, 807 +USSUS, + 19,005 ) + I, (U556, + G OUS, + 03,0, +¢,503, ) (19)

+3,(075¢, + @00, + U550, + ¢,z ) + 1, (5,3, +Ug,005, )] dA

where 1,,1;,1,,J,,J,,K, are mass components of the FGP microplates which are defined as
follows:

h/2
(I 115,93, K,) = [ (L@, @7, @, @@, @7 )odx, (20)

-h/2

3. Series-type solutions

Based on the Ritz method, the membrane and transverse displacements (uf,ug,ug,%%)

of the FGP microplates can be expressed in terms of the series of approximation functions and
associated values of series as follows:

{Uloa(/h}(xvxz) = _nz_ll:i{ulijlxij}Ri,l(xl)Pj (%) {U3,<02}(X1vxz) :gi{uzijvyij}Ri (%) P2 (%) (21a)
ug(&’xz)zinzzusini(xi)Pj(Xz); (21b)

i=1 j=1

where Uy, Uy;,Ug;, %, Y, are variables to be determined; R;(x,),P;(x,) are the shape functions

in X, —, X, — direction, respectively. It should be noted that the accuracy, convergence rates and
numerical instabilities of the Ritz solution depends on the selection of the shape functions, which
was discussed in details in ([5, 17]). The functions R, (xl) and P, (x,) are constructed to satisfy
the boundary conditions (BCs) at the FGP microplate edges in which two following kinematic
typical BCs are considered as follows: Simply supported (S) for ul =ug =¢, =0 at X, =0,a and
U =u;=¢ =0 at x,=0b; Clamped (C) for u)=uj=uj=¢ =¢,=0 at x =0,a and
X, =0,b. The combination of S and C on the edges leads to the different BCs, in which SSSS,

SCSC and CCCC are chosen to investigate in this paper. Furthermore, in order to derive
characteristis equations of motion of the FGP microplates, substituting the approximations in Eq.
(21) into Eq. (16) leads to:
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Kd+Md=0 (22)

where d=[u, u, u, X y]T is the displacement vector to be determined;

K=K*+K”* +K* +K" is the stiffness matrix which is composed of those of the strains K°,

symmetric rotation gradients K”, dilatation gradient K*, and deviation stretch gradient K”; M
is the mass matrix. These components are given more details as follows:

B Kgll K§12 K¢13 K§14 Kgls" M Mll 0 M13 M14 0 ]
TKé'lZ K{ZZ K§23 K§24 K{ZS 0 MZZ M23 0 M25
K¢S =| TKéB TRKEB K K KB [M=|TMB TM®  M® M*  M® (23)
TKEWM  Te2 T K¢ K ¢4 T MM 0 M3 M M2
TKEB  TRKEB TRKEB TR K 0 T™Z TM® TM® M®

with ¢ ={¢,&, z,n} - Itis noted that for free vibration analysis, by denoting d(t) = de’* Where @
is the natural frequency of the FGP microplates and i* =—1 is imaginary unit, the natural
frequencies can be derived from the following characteristic equation: (K —»°M)d =0.

4. BCMO-DNN algorithm

Optimization problem: The objective of the current optimization problem is to search for the
optimal material properties of the FGP microplates that can maximize the natural frequencies
subjected to several constraints. The Young's modulus and mass densities are considered as design
variables. The formulation of constrained objective functions for vibration optimization can be
stated as follows:

C,i?

Maximize @ = f (E,;,E, ;. 0.1 20 )

(K-o’M)d=0
SUbJECted to Ec,min < Ec,i < Ec,max; Em,min < Em,i < Em,max (24)
pc,min < pc,i < pc,max ’ pm,min < pm,i < pm,max
Where E,min = E,mean _100/0E,mean ! E,max = E,mean +1O% E,mean ! p,min :Rmean _1O%p,mean '

P = Povean T10%0 s E oy 0 ean 8T€ the mean values of Young’s modulus and mass density
of constituent materials, respectively.

Combination of BCMO and DNN: Initiated by Le-Duc et al. [10], BCMO is a meta-heuristic
algorithm method which is inspired by the fact that the solution space is assumed to be in
Cartesian coordinates and the searching movements of candidate solutions are compositely
equalized in both global and local ones. In fact, a candidate solution can move closer to better
ones to exploit the local regions, and move further to explore the search space. Thus, the best-
ranked individual in each generation can jump immediately from space to space or intensify its
current local space (the details of the algorithm can be found in [10]). Moreover, the input data
from BCMO will be trained by the deep neural network (DNN), which is passed through the input
layer, hidden layers and output layer. The input data is multiplied by the weights before it reaches
the nodes. Each node in the subsequent layers will get the sum of the output values of the previous
nodes multiplied by the associated weights, and the output data of the activation function for the
sum is given as follows ([18]):
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Loy
v =o(x') =¢(Zwu“ xy; +bi”] (25)

j=1
where yrand x" are the data pair output and input of activation function of node I, respectively;

W™ are the weights between the output node I and input node j; b" is the bias of node j; ¢ is

the activation function. Furthermore, a loss function is required to evaluate the performance of
the prediction model. The objective of loss function is to measure the difference between target
values and predicted ones, from which during the training process, the difference between the
model outputs and the target values are converged to zeros. In practice, the mean square error
(MSE) [19] is commonly used to evaluate the accuracy of the prediction model, hence it will be
applied in this paper.

5. Numerical results

In this section, numerical examples are carried out to investigate optimal free vibration
behaviors of FGP microplates with different boundary conditions in which the shear function
f(x,)=x, —4x2/3n? Is selected. The FGP microplates are supposed to be made of ceramic
material Al,O3 and metal one Al whose properties are given as follows: Al:O; (E, =380GPa,
p. =3800kg/m?, v_=0.3), Al (E,=70GPa, p, =2702kg/m? v =0.3). For simplification
purpose, all three length scale parameters are assumed to have identical values, i.e.,
I, =1, =1, =1. For convenience, the following normalized parameter is used in the computations:

o=wd’Ihp,IE, .

In order to study the effects of the side-to-thickness ratio, material length scale and
boundary conditions on natural frequencies of FGP microplates. Fig. 1 displays the variation of
normalized fundamental frequencies with respect to the side-to-thickness ratio a/h and length
scale-to-thickness ratio h/l of Al/Al,O; FGP microplates with p=5, a/h=10 and three
boundary conditions (SSSS, SCSC, CCCC). It can be seen that the natural frequencies decrease
with the increase of h/l up to the value of h/1 =10 from which the curves become flatter and

size effects may thus be disregarded, the highest and lowest curves of interaction correspond to
the CCCC and SSSS boundary conditions, respectively.

Fig. 1. Variation of normalized fundamental frequency with respect to side-to-thickness ratio
a/h and length scale-to-thickness ratio h/l (p=5,8=0.1)
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In order to investigate stochastic vibration responses of FGP microplates, four random
variables of material properties (E, ,E,,,pni,0.;) are employed with the population size

NP =500. These design variables are considered as input data and the first normalization of
frequency are taken as output data for training samples. The data set consists of input-output pairs
and training samples which are randomly generated through iterations for training in the DNN. It
is noted that the DNN processing with 1000 iterations and 1 epoch for each iteration. Table 1
presents the mean and standard deviation (SD) of normalized fundamental frequencies of
Al/Al,O3; FGP microplates. The results are calculated for two boundary conditions (SSSS,
CCCC), power law-index p = 2, side-to-thickness ratio a/h=10, porous parameters 4 =0.1
and 0.2 with different values of thickness-to-MLSP ratio h/1=1,2,5,10. It can be seen that the
statistical moments of normalized fundamental frequencies obtained from the Ritz—-BCMO and
BCMO-DNN show great agreements in all cases. The mean values of nondimensional
fundamental frequencies for both Ritz-BCMO and BCMO-DNN are close to the deterministic
result (Ritz) for all boundary conditions. As expected, the natural frequencies decrease with an
increase of the ratio of material length scale parameter. Moreover, it is observed that the
computational time needed by the Ritz-BCMO approach is approximately 9 times greater than
that by the BCMO-DNN method, that shows the efficiency on computational cost of the BCMO-
DNN algorithm.

Table 1. Mean and standard deviation of normalized fundamental frequencies of FGP
microplates with p =2 and a/h=10

. Time
BCs i:?)trﬁgﬁf; Theory h/l ©)
10 5 2 1
SSSS p=0.1
Ritz 41238 | 4.9947 | 9.1029 16.9999
ean Ritz-BCMO | 4.0969 | 5.0102 | 9.1118 16.9679 2854
BCMO-DNN | 4.0975 | 5.0110 | 9.1130 16.9694 320
D Ritz-BCMO | 0.1308 | 0.1696 | 0.2578 0.4501
BCMO-DNN | 0.1299 | 0.1684 | 0.2561 0.4468
£=0.2
Ritz 3.7713 | 4.7471 | 8.9419 16.8823
mean Ritz- BCMO | 3.7733 | 4.7238 | 8.9212 16.8805 2855
BCMO-DNN | 3.7742 | 4.7246 | 8.9226 16.8829 325
D Ritz- BCMO | 0.1722 | 0.1803 | 0.2747 0.5207
BCMO-DNN | 01714 | 0.1793 | 0.2730 0.5170
cccec | B=01
mean Ritz 7.2033 | 8.8372 | 15.7657 | 28.6778
Ritz- BCMO | 7.1993 | 8.8144 | 15.7081 | 28.7767 2855
BCMO-DNN | 7.2006 | 8.8156 | 15.7100 | 28.7775 320
SD Ritz-BCMO | 02404 | 0.2634 | 0.4635 0.8480
BCMO-DNN | 0.2391 | 0.2614 | 0.4615 0.8498
£=0.2
mean Ritz 6.6362 | 8.3403 | 15.2109 | 28.4556
Ritz-BCMO | 6.6804 | 8.3357 | 15.2698 | 28.2874 2856
BCMO-DNN | 6.6817 | 8.3370 | 15.2719 | 28.2856 323
SD Ritz- BCMO | 0.2743 | 0.2846 | 0.4951 0.8394
BCMO-DNN | 0.2725 | 0.2823 | 0.4918 0.8388
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h/l=1 h/l=1 h/l=1

h/1=5 _
h/1=5 h/l=5
Fig. 2. Scatter plot, probability density function, and loss function of the normalized
fundamental frequency for simply supported FGP microplates with #=0.1, a/h=10, p=2

In order to demonstrate the performance of present model further, Fig. 2 presents the scatter
plot, probability density function and loss function of the fundamental frequency for FGP
microplates with porous parameters g#=0.1, a/h=10 and p =2. These graphs indicate that

the present BCMO-DNN model can effectively substitute the Ritz-BCMO for stochastic analysis
with accuracy and significant saving of computational time. Moreover, the MSE converges to
zero after 200 iterations for both the training set and test set.

6. Conclusions

Optimal vibration behaviors of FGP microplates with uncertainties of material properties
has been introduced in this paper. The theory is based on a unified framework of higher-order
shear deformation theory and modified strain gradient theory. In addition, a combination of
BCMO-DNN has been developed to solve the optimization problems and predict stochastic
vibration responses of FGP microplates subjected to uncertainties of material properties. The
effects of material distribution, material length scale, porosity density and boundary conditions
on natural frequencies of FGP microplates have been investigated for both Ritz-BCMO and
BCMO-DNN algorithm. Based on the obtained numerical results, the following important points
can be derived:

- Present unified higher-order shear deformation theory and modified strain gradient theory
are found to be accurate and efficient in predicting stochastic vibration behaviors of FGP
microplates.

- Natural frequencies decrease with an increase of the porosity density and material length
scale parameter.
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- Proposed BCMO-DNN algorithm allows to significantly save computational costs. The
computational time of natural frequencies required by the BCMO-DNN method is about 1/9 times
that of the Ritz-BCMO method.

References

[1] A. C. Eringen, Nonlocal polar elastic continua, International Journal of Engineering Science, Vol. 10,
No. 1, pp. 1-16, 1972/01/01/ 1972.

[2] A. R. Ashoori, E. Salari, and S. A. Sadough Vanini, Size-dependent thermal stability analysis of
embedded functionally graded annular nanoplates based on the nonlocal elasticity theory, International
Journal of Mechanical Sciences, Vol. 119, pp. 396-411, 2016/12/01/ 2016.

[3] A. Farzam and B. Hassani, Isogeometric analysis of in-plane functionally graded porous microplates
using modified couple stress theory, Aerospace Science and Technology, Vol. 91, pp. 508-524, 2019/08/01/
2019.

[4] H. X. Nguyen, T. N. Nguyen, M. Abdel-Wahab, S. P. A. Bordas, H. Nguyen-Xuan, and T. P. Vo, A
refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple
stress theory, Computer Methods in Applied Mechanics and Engineering, Vol. 313, pp. 904-940,
2017/01/01/ 2017.

[5] V.-T. Tran, T.-K. Nguyen, P. T. T. Nguyen, and T. P. Vo, Stochastic vibration and buckling analysis of
functionally graded microplates with a unified higher-order shear deformation theory, Thin-Walled
Structures, Vol. 177, p. 109473, 2022/08/01/ 2022.

[6] G. Dhiman and V. Kumar, Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique
for engineering applications, Advances in Engineering Software, Vol. 114, pp. 48-70, 2017/12/01/ 2017.

[7]J. S. Moita, A. L. Aragjo, V. F. Correia, C. M. Mota Soares, and J. Herskovits, Material distribution and
sizing optimization of functionally graded plate-shell structures, Composites Part B: Engineering, Vol. 142,
pp. 263-272, 2018/06/01/ 2018.

[8] V. M. Franco Correia, J. F. Aguilar Madeira, A. L. Araljo, and C. M. Mota Soares, Multiobjective
optimization of ceramic-metal functionally graded plates using a higher order model, Composite Structures,
Vol. 183, pp. 146-160, 2018/01/01/ 2018.

[91 D. T. T. Do, D. Lee, and J. Lee, Material optimization of functionally graded plates using deep neural
network and modified symbiotic organisms search for eigenvalue problems, Composites Part B:
Engineering, Vol. 159, pp. 300-326, 2019/02/15/ 2019.

[10] T. Le-Duc, Q.-H. Nguyen, and H. Nguyen-Xuan, Balancing composite motion optimization,
Information Sciences, Vol. 520, pp. 250-270, 2020/05/01/ 2020.

[11] H. Thanh Duong, H. Chi Phan, T.-T. Le, and N. Duc Bui, Optimization design of rectangular concrete-
filled steel tube short columns with Balancing Composite Motion Optimization and data-driven model,
Structures, Vol. 28, pp. 757-765, 2020/12/01/ 2020.

[12] S. Khatir, S. Tiachacht, C. Le Thanh, E. Ghandourah, S. Mirjalili, and M. Abdel Wahab, An improved
Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM
composite plates, Composite Structures, Vol. 273, p. 114287, 2021/10/01/ 2021.

[13] M. Abouhamze and M. Shakeri, Multi-objective stacking sequence optimization of laminated
cylindrical panels using a genetic algorithm and neural networks, Composite Structures, Vol. 81, No. 2, pp.
253-263, 2007/11/01/ 2007.

[14] T. T. Tran, P.-C. Nguyen, and Q.-H. Pham, Vibration analysis of FGM plates in thermal environment
resting on elastic foundation using ES-MITC3 element and prediction of ANN, Case Studies in Thermal
Engineering, VVol. 24, p. 100852, 2021/04/01/ 2021.

[15] X. Liu, F. Tao, H. Du, W. Yu, and K. J. J. 0. A. M. Xu, Learning nonlinear constitutive laws using
neural network models based on indirectly measurable data, VVol. 87, No. 8, p. 081003, 2020.

[16] P. A. Demirhan and V. Taskin, Bending and free vibration analysis of Levy-type porous functionally
graded plate using state space approach, Composites Part B: Engineering, Vol. 160, pp. 661-676,
2019/03/01/ 2019.

TIEU BAN TRI TUE NHAN TAO TRONG CO HOC 587



Van-Hau Nguyen, Van-Thien Tran and Trung-Kien Nguyen

[17] T.-K. Nguyen, H.-T. Thai, and T. P. Vo, A novel general higher-order shear deformation theory for
static, vibration and thermal buckling analysis of the functionally graded plates, Journal of Thermal
Stresses, Vol. 44, No. 3, pp. 377-394, 2021/03/04 2021.

[18] S. Makridakis et al., The accuracy of extrapolation (time series) methods: Results of a forecasting
competition, Journal of Forecasting, https://doi.org/10.1002/for.3980010202 Vol. 1, No. 2, pp. 111-153,
1982/04/01 1982.

[19] S. Makridakis et al., The accuracy of extrapolation (time series) methods: Results of a forecasting
competition, Vol. 1, No. 2, pp. 111-153, 1982.

588 TIEU BAN TRI TUE NHAN TAO TRONG CO HOC



	TRANG BIA-LOT.pdf (p.1-2)
	II.1-Bai bao.pdf (p.3-24)
	Stochastic vibration and buckling analysis of functionally graded microplates with a unified higher-order shear deformation theory
	Introduction
	Theoretical formulation
	Modified couple stress theory (MCT)
	Unified higher-order shear deformation theory (HSDT) of the FG microplates

	Series-type solutions of the FG microplates
	Polynomial chaos expansion (PCE)
	Numerical examples
	Vibration analysis
	Buckling analysis
	Reliability estimation and sensitivity results

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


	II.2-Bai bao.pdf (p.25-42)
	Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm
	Introduction
	Theoretical formulation
	Modified couple stress theory
	Unified higher-order shear deformation theory

	Ritz method
	ANN-BCMO algorithm
	Optimization problem
	Balancing Composite Motion optimization
	ANN-BCMO algorithm

	Numerical examples
	Vibration analysis
	Buckling analysis

	Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


	II.3-Bai bao.pdf (p.43-68)
	II.4-Bai bao.pdf (p.69-108)
	II.5 Bai bao.pdf (p.109-121)
	III.Trong nuoc.pdf (p.122-145)
	1. INTRODUCTION
	2. THEORETICAL FORMULATION
	2.1. Modified strain gradient theory (MST)
	2.2. Unified kinematics of FGP microplates
	2.3. Energy principle

	3. RITZ-BASED SOLUTIONS
	4. NUMERICAL RESULTS
	4.1. Static analysis
	4.2. Free vibration analysis

	5. CONCLUSIONS
	DECLARATION OF COMPETING INTEREST
	FUNDING
	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C

	1-Hoi nghi.pdf (p.146-160)
	2-Hoi nghi.pdf (p.161-175)
	 Preface
	Contents
	A Novel Least-Squares Polygonal Finite Element Level Set Method
	1 Introduction
	2 Conventional Level Set Evolution
	2.1 Implicit Level Set Representation
	2.2 Level Set Re-initialization Process



	3-Hoi nghi.pdf (p.176-191)
	Novel Computational Algorithms for Vibration, Buckling, and Transient Analysis of Porous Metal Foam Microplates
	Abstract
	Purpose
	Method
	Results and Conclusion

	Introduction
	Theoretical Formulation
	Porous Metal Foam Material (PMF)
	Unified High-Order Shear Deformation Theory (HSDT) of Porous Metal Foam Microplate
	Modified Couple Stress Theory (MCT)
	Ritz Formulation

	Numerical Results
	Conclusions
	Appendix 1
	Appendix 2
	Appendix 3
	Data availability
	References


